Topology

Exercise 1: True or false?

These basic questions are designed to spark discussion and as a self-test.

Tick the correct statements, but not the incorrect ones!

- a) A topological space
 - \bigcirc is defined by a set, a topology, and an atlas.
 - $\, \odot \,$ is a set without any further structure.
 - \bigcirc defines a notion of open sets.
 - $\bigcirc\,$ always has integer dimension.
 - \bigcirc allows to check the continuity of a map from the underlying set to itself.
- b) The chaotic topology on a set M
 - \bigcirc cannot be defined on the natural numbers $\mathbb N.$
 - \bigcirc consists of all subsets of M.
 - \bigcirc contains the empty set.
 - \bigcirc is the coarsest topology on M.
 - \bigcirc makes all maps $f: N \to M$ continuous, where the domain may carry an arbitrary topology.
- c) Consider a map $f: M \to N$ between topological spaces (M, \mathcal{O}_M) and (N, \mathcal{O}_N) .
 - \bigcirc Continuity can only be defined if $M = \mathbb{R}^m$ and $N = \mathbb{R}^n$ for positive integers m and n.
 - \bigcirc For some maps, one can arrange for the topological notion of continuity to coincide with the undergraduate analysis notion of continuity.
 - \bigcirc Continuity of a map can only be defined for some topologies.
 - \bigcirc Continuity is a property of a map that only depends on the topology \mathcal{O}_M .
 - \bigcirc Choosing the discrete topology on M makes all maps from M to N continuous.
- d) A subset $U \subseteq M$ of a topological space (M, \mathcal{O})
 - \bigcirc may be open and not open at the same time.
 - $\bigcirc\,$ may be open, but not closed.
 - \bigcirc may be closed, but not open.
 - $\bigcirc\,$ may be open and closed.
 - $\bigcirc\,$ may be not open and not closed.

Topology

Exercise 2: Topologies on a simple set

This exercise is about recognizing topologies.

Question: Write down the definition of a topology \mathcal{O} on a set M.

Solution:

i.

ii.

iii.

Let $M = \{1, 2, 3, 4\}$ be a set.

Question: Does $\mathcal{O}_1 := \{\emptyset, \{1\}, \{1, 2, 3, 4\}\}$ constitute a topology on M?

Solution:

Question: What about $\mathcal{O}_2 := \{\emptyset, \{1\}, \{2\}, \{1, 2, 3, 4\}\}$?

Solution:

Question: Are there other topologies than the ones recognized so far?

Topology

Exercise 3: Continuous functions

Becoming familiar with the striking impact of choosing topologies on the continuity of a map.

Question: What is the definition of a continuous map?

Solution:

Question: Let $M = \{1, 2, 3, 4\}$ and consider the identity map $\mathrm{id}_M : M \to M$ defined by

 $id_M(1) = 1$, $id_M(2) = 2$, $id_M(3) = 3$, $id_M(4) = 4$.

Is the map id_M continuous if the domain is equipped with the chaotic topology and the target with the topology $\mathcal{O}_{\mathrm{target}} := \{\emptyset, \{1\}, \{1, 2, 3, 4\}\}$?

Solution:

Question: Consider the inverse $\operatorname{id}_M^{-1} : M \to M$ of the identity map id_M , such that now the target is equipped with the chaotic topology and the domain with the topology $\{\emptyset, \{1\}, \{1, 2, 3, 4\}\}$.

Provide the values of the map id_M^{-1} and decide whether id_M^{-1} is continuous!

Solution:

 $\mathrm{id}_M^{-1}(1) = \mathrm{id}_M^{-1}(2) = \mathrm{id}_M^{-1}(3) = \mathrm{id}_M^{-1}(4) =$

Topology

Exercise 4: The standard topology on \mathbb{R}^d

The topology you always knew, possibly without knowing.

Question: Sketch the real intervals below and decide whether they are open or not in $\mathcal{O}_{standard}$!

interval	\mathbf{sketch}	open or not open in $\mathcal{O}_{ ext{standard}}?$
(0,1)		
[0,1)		
(0,1]		
[0,1]		
$(0,1) \cup (2,3)$		

Question: Which of the following subsets of \mathbb{R}^2 are open with respect to the standard topology?

Question: Consider a function $f : \mathbb{R} \to \mathbb{R}$ given by the following graph.

If domain and target of the map are both equipped with the standard topology, is this function continuous?

Solution: