Multilinear Algebra

Exercise 1: True or false?

These basic questions are designed to spark discussion and as a self-test.

Tick the correct statements, but not the incorrect ones!
a) What statements on vector spaces are correct?
\bigcirc Commutativity of multiplication is a vector space axiom.
O Every vector is a matrix with only one column.
O Every linear map between vector spaces can be represented by a unique quadratic matrix.
O Every vector space has a corresponding dual vector space.
\bigcirc The set of everywhere positive functions on \mathbb{R} with pointwise addition and S-multiplication is vector space.
b) What is true about tensors and their components?
\bigcirc The tensor product of two tensors is a tensor.
\bigcirc You can always reconstruct a tensor from its components and the corresponding basis.
\bigcirc The number of indices of the tensor components depends on dimension.
O The Einstein summation convention does not apply to tensor components.
\bigcirc A change of basis does not change the tensor components.
c) Given a basis for a d-dimensional vector space V,

O one can find exactly d^{2}-different dual bases for the corresponding dual vector space V^{*}.
\bigcirc by removing one basis vector of the basis of V, a basis for a $(d-1)$-dimensional vector space V_{1} is obtained.

O the continuity of a map $f: V \rightarrow W$ depends on the choice of basis for the vector space W.
O one can extract the components of the elements of the dual vector space V^{*}.
\bigcirc each vector of V can be reconstructed from its components.

Multilinear Algebra

Exercise 2: Vector spaces

Building the vector space \mathbb{R}^{3} and its dual.

Let $V:=\mathbb{R}^{3}$ be a set of all real triples.
Question: We equip the set V with addition $\oplus: V \times V \longrightarrow V$ and S-multiplication $\odot: \mathbb{R} \times V \longrightarrow V$, defined by

$$
(a, b, c) \oplus(d, e, f):=(a+d, b+e, c+f)
$$

and

$$
\lambda \odot(a, b, c):=(\lambda \cdot a, \lambda \cdot b, \lambda \cdot c),
$$

where + and \cdot are the addition and multiplication on \mathbb{R}. Check that (V, \oplus, \odot) is a vector space.

Solution:

Question: Consider the map

$$
d: V \longrightarrow V ;(a, b, c) \mapsto d((a, b, c)):=(b, 2 c, 0) .
$$

Is d linear?

Solution:

Question: Show that $d \circ d$ is linear.

Solution:

Question: Consider the map

$$
i: V \longrightarrow \mathbb{R} ; \quad(a, b, c) \mapsto i((a, b, c)):=a+\frac{1}{2} b+\frac{1}{3} c .
$$

Check linearity. Of what set is i an element?

Solution:

Question: Consider the map

$$
\begin{gathered}
G: V \times V \longrightarrow \mathbb{R} \\
\left(\left(a_{1}, b_{1}, c_{1}\right),\left(a_{2}, b_{2}, c_{2}\right)\right) \mapsto 2 \cdot a_{1} \cdot a_{2}+\frac{2}{3} \cdot a_{1} \cdot c_{2}+\frac{2}{3} \cdot b_{1} \cdot b_{2}+\frac{2}{3} \cdot c_{1} \cdot a_{2}+\frac{2}{5} c_{1} \cdot c_{2}
\end{gathered}
$$

Show that G is multilinear.

Solution:

Question: Compare the above map $d: V \longrightarrow V$ with the map $\delta: P \longrightarrow P$ from the lecture and construct a bijective linear map $j: P \longrightarrow \mathbb{R}^{3}$ such that

$$
d=j \circ \delta \circ j^{-1}
$$

Solution:

Multilinear Algebra

Exercise 3: Indices

Winning the index battle.

Let V be a d - dimensional vectorspace. Consider two tensors A and B, where

$$
A: V^{*} \times V^{*} \xrightarrow{\sim} \mathbb{R}
$$

and

$$
B: V \times V \xrightarrow{\sim} \mathbb{R}
$$

V has the basis $e_{1}, e_{2}, \ldots, e_{d}$ and V^{*} has the basis $\epsilon^{1}, \epsilon^{2}, \ldots, \epsilon^{d}$.
Question: Define the components $A^{a b}$ of A and $B_{a b}$ of B with respect to the given bases.

Solution:

Question: Recall the "Einstein summation convention" and write it down in your own words.

Solution:

Question: We define $A^{[a b]}:=\frac{1}{2}\left(A^{a b}-A^{b a}\right)$. Show that

$$
A^{[a b]}=-A^{[b a]}
$$

and also

$$
A^{[a b]} B_{a b}=A^{a b} B_{[a b]}
$$

Solution:

Question: We additionally define $B_{(a b)}:=\frac{1}{2}\left(B_{a b}+B_{b a}\right)$. Now, show that

$$
B_{(a b)}=B_{(b a)}
$$

and again

$$
A^{a b} B_{(a b)}=A^{(a b)} B_{a b} .
$$

Solution:

Question: Using the results from the previous questions, we can easily show

$$
A^{[a b]} B_{(a b)}=0,
$$

i.e., the summation (contraction) of symmetric and anti-symmetric indices yields zero.

Solution:

Multilinear Algebra

Exercise 4: Linear maps as tensors

Recognizing that a linear map $V^{*} \xrightarrow{\sim} V^{*}$ is a $(1,1)$-tensor over V.

Question: Given a vector space V and linear map $\phi: V^{*} \xrightarrow{\sim} V^{*}$ construct a $(1,1)$-tensor T_{ϕ}.

Solution:

Question: Given a $(1,1)$-tensor $T: V^{*} \times V \xrightarrow{\sim} \mathbb{R}$, construct a linear map $\phi_{T}: V^{*} \xrightarrow{\sim} V^{*}$.

Solution:

Question: Show that
a) $T_{\phi_{T}}=T$
b) $\phi_{T_{\phi}}=\phi$

Solution:

Question: Conclude that a linear map $\phi: V^{*} \xrightarrow{\sim} V^{*}$ is a $(1,1)$-tensor.

Solution:

