THE WE-HERAEUS INTERNATIONAL WINTER SCHOOL ON GRAVITY AND LIGHT

Multilinear Algebra

Exercise 1: True or false?

These basic questions are designed to spark discussion and as a self-test.

Tick the correct statements, but not the incorrect ones!

- a) What statements on vector spaces are correct?
 - \bigcirc Commutativity of multiplication is a vector space axiom.
 - \bigcirc Every vector is a matrix with only one column.
 - Every linear map between vector spaces can be represented by a unique quadratic matrix.
 - Every vector space has a corresponding dual vector space.
 - \bigcirc The set of everywhere positive functions on $\mathbb R$ with pointwise addition and S-multiplication is vector space.
- b) What is true about tensors and their components?
 - \bigcirc The tensor product of two tensors is a tensor.
 - \odot You can always reconstruct a tensor from its components and the corresponding basis.
 - \bigcirc The number of indices of the tensor components depends on dimension.
 - \bigcirc The Einstein summation convention does not apply to tensor components.
 - \bigcirc A change of basis does not change the tensor components.

c) Given a basis for a d-dimensional vector space V,

- \bigcirc one can find exactly d^2 -different dual bases for the corresponding dual vector space V^* .
- by removing one basis vector of the basis of V, a basis for a (d 1)-dimensional vector space V_1 is obtained.
- \bigcirc the continuity of a map $f: V \to W$ depends on the choice of basis for the vector space W.
- \bigcirc one can extract the components of the elements of the dual vector space V^* .
- \bigcirc each vector of V can be reconstructed from its components.

The we-heraeus international winter school on $GRAVITY\,AND\,LIGHT$

Multilinear Algebra

Exercise 2: Vector spaces

Building the vector space \mathbb{R}^3 and its dual.

Let $V := \mathbb{R}^3$ be a set of all real triples.

Question: We equip the set V with addition $\oplus : V \times V \longrightarrow V$ and S-multiplication $\odot : \mathbb{R} \times V \longrightarrow V$, defined by

$$(a,b,c) \oplus (d,e,f) := (a+d,b+e,c+f)$$

and

 $\lambda \odot (a, b, c) := (\lambda \cdot a, \lambda \cdot b, \lambda \cdot c),$

where + and \cdot are the addition and multiplication on \mathbb{R} . Check that (V, \oplus, \odot) is a vector space.

Solution:

 ${\bf Question:}$ Consider the map

$$d: V \longrightarrow V; \ (a, b, c) \mapsto d((a, b, c)) := (b, 2c, 0).$$

Is d linear?

Question: Show that $d \circ d$ is linear.

Solution:

 ${\bf Question:}$ Consider the map

$$i: V \longrightarrow \mathbb{R}; \ (a, b, c) \mapsto i((a, b, c)) := a + \frac{1}{2}b + \frac{1}{3}c.$$

Check linearity. Of what set is i an element?

Solution:

Question: Consider the map

$$G: V \times V \longrightarrow \mathbb{R}$$

((a₁, b₁, c₁), (a₂, b₂, c₂)) $\mapsto 2 \cdot a_1 \cdot a_2 + \frac{2}{3} \cdot a_1 \cdot c_2 + \frac{2}{3} \cdot b_1 \cdot b_2 + \frac{2}{3} \cdot c_1 \cdot a_2 + \frac{2}{5} c_1 \cdot c_2$

Show that G is multilinear.

Solution:

Question: Compare the above map $d: V \longrightarrow V$ with the map $\delta: P \longrightarrow P$ from the lecture and construct a bijective linear map $j: P \longrightarrow \mathbb{R}^3$ such that

$$d = j \circ \delta \circ j^{-1}.$$

The we-heraeus international winter school on $GRAVITY\,AND\,LIGHT$

Multilinear Algebra

Exercise 3: Indices

Winning the index battle.

Let V be a d-dimensional vectorspace. Consider two tensors A and B, where

 $A: V^* \times V^* \stackrel{\sim}{\longrightarrow} \mathbb{R}$

and

 $B:V\times V \xrightarrow{\sim} \mathbb{R}$.

V has the basis e_1, e_2, \ldots, e_d and V^* has the basis $\epsilon^1, \epsilon^2, \ldots, \epsilon^d$.

Question: Define the components A^{ab} of A and B_{ab} of B with respect to the given bases.

Solution:

Question: Recall the "Einstein summation convention" and write it down in your own words. **Solution:**

Question: We define $A^{[ab]} := \frac{1}{2} \left(A^{ab} - A^{ba} \right)$. Show that

 $A^{[ab]} = -A^{[ba]}$

and also

$$A^{[ab]}B_{ab} = A^{ab}B_{[ab]}$$

Question: We additionally define $B_{(ab)} := \frac{1}{2} (B_{ab} + B_{ba})$. Now, show that

 $B_{(ab)} = B_{(ba)}$

and again

$$A^{ab}B_{(ab)} = A^{(ab)}B_{ab}.$$

Solution:

 $\mathbf{Question:}$ Using the results from the previous questions, we can easily show

$$A^{[ab]}B_{(ab)} = 0,$$

i.e., the summation (contraction) of symmetric and anti-symmetric indices yields zero.

THE WE-HERAEUS INTERNATIONAL WINTER SCHOOL ON **GRAVITY AND LIGHT** Multilinear Algebra Exercise 4: Linear maps as tensors Recognizing that a linear map $V^* \xrightarrow{\sim} V^*$ is a (1,1)-tensor over V. **Question:** Given a vector space V and linear map $\phi: V^* \xrightarrow{\sim} V^*$ construct a (1,1)-tensor T_{ϕ} . Solution: **Question:** Given a (1,1)-tensor $T: V^* \times V \xrightarrow{\sim} \mathbb{R}$, construct a linear map $\phi_T: V^* \xrightarrow{\sim} V^*$. Solution: **Question:** Show that a) $T_{\phi_T} = T$ b) $\phi_{T_{\phi}} = \phi$ Solution: **Question:** Conclude that a linear map $\phi: V^* \xrightarrow{\sim} V^*$ is a (1, 1)-tensor. Solution: