Differentiable Manifolds

Exercise 1: True or false?

These basic questions are designed to spark discussion and as a self-test.

Tick the correct statements, but not the incorrect ones!

a) The function $f : \mathbb{R} \to \mathbb{R} \dots$

 $\bigcirc \ldots$, defined by $f(x) = x^2$, lies in $C^3(\mathbb{R} \to \mathbb{R})$.

- $\bigcirc \ldots$, defined by f(x) = |x|, lies in $C^2(\mathbb{R} \to \mathbb{R})$.
- $\bigcirc \ldots$, defined by $f(x) = |x^3|$, lies in $C^3(\mathbb{R} \to \mathbb{R})$.
- $\bigcirc \ldots$, defined by $f(x) = \exp |x|$, lies in $C^{\infty}(\mathbb{R} \to \mathbb{R})$.
- $\bigcirc \ldots$, defined by $f(x) = \ln x$ (with the domain restricted to \mathbb{R}^+), lies in $C^{\infty}(\mathbb{R}^+ \to \mathbb{R})$.
- b) Which statements on differentiable manifolds are true?
 - \bigcirc Every smooth manifold has a maximal atlas.
 - \bigcirc Every C^2 -manifold is also a C^1 -manifold.
 - \bigcirc Every differentiable manifold is also a topological manifold.
 - \bigcirc In a C^{∞} -manifold, chart maps are differentiable.
 - Definition of a C^k -curve requires a $C^{m \ge k}$ -manifold.
- c) A differentiable manifold
 - \bigcirc is always a topological space.
 - $\, \odot \,$ has enough structure to constitute a vector space.
 - \bigcirc is a generalisation of a set.
 - \bigcirc requires the discrete topology.
 - \bigcirc features at least one set of charts that covers the whole manifold.

Differentiable Manifolds

Exercise 2: Restricting the atlas

From topological to differentiable manifolds.

Let $(\mathbb{R}, \mathcal{O}_{\text{standard}})$ be a topological space. Let it be further equipped with an atlas $\mathcal{A} = \{(\mathbb{R}, x), (\mathbb{R}, y)\}$ where $x : \mathbb{R} \to \mathbb{R}; a \mapsto x(a) = a$ and $y : \mathbb{R} \to \mathbb{R}; a \mapsto y(a) = a^3$

Question: Construct the chart transition map $y \circ x^{-1} : \mathbb{R} \to \mathbb{R}$ and give its differentiability class.

Solution:

Question: Also construct the chart transition map $x \circ y^{-1} : \mathbb{R} \to \mathbb{R}$. Is $(\mathbb{R}, \mathcal{O}_{\text{standard}}, \mathcal{A})$ a differentiable manifold?

Solution:

Question: Restrict the atlas \mathcal{A} to an atlas $\tilde{\mathcal{A}}$ in order to make $\left(\mathbb{R}, \mathcal{O}_{standard}, \tilde{\mathcal{A}}\right)$ into a smooth manifold.

Differentiable Manifolds

Exercise 3: Soft squares on $\mathbb{R} \times \mathbb{R}$

From charts to atlases.

Let $M = \mathbb{R} \times \mathbb{R}$ equipped with the soft square topology \mathcal{O}_{ssq} and an atlas $\mathcal{A} = \{(U_n, x_n)\}$, where $U_n = \{(x, y) \in \mathbb{R} \times \mathbb{R}, | |x| < n, |y| < n, n \in \mathbb{N}^+\}$ and

$$x_n: U_n \to x_n \left(U_n \right) \subset \mathbb{R}^2; \ (x, y) \mapsto x_n((x, y)) := \left(\frac{x+y}{2n}, \frac{x-y}{2n} \right)$$

Question: Recall the definition of a chart and show that the (U_n, x_n) are indeed charts. Solution:

Question: Show that \mathcal{A} is a C^k -atlas by explicitly constructing the chart transition map. What is k?

Solution:

Question: Construct at least one other chart that would lie in the maximal extension of \mathcal{A} and prove that it does.

Differentiable Manifolds

Short exercise 4: Undergraduate multi-dimensional analysis

A good notation and basic results for partial differentiation.

For a map $f : \mathbb{R}^d \to \mathbb{R}$ we denote by the map $\partial_i f : \mathbb{R}^d \to \mathbb{R}$ the partial derivative with respect to the *i*-th entry.

 $\mathbf{Question:}\ \mathrm{Given}\ \mathrm{a}\ \mathrm{function}$

 $f: \mathbb{R}^3 \to \mathbb{R}; \ (\alpha, \beta, \delta) \mapsto f(\alpha, \beta, \delta) := \alpha^3 \beta^2 + \beta^2 \delta + \delta$

calculate the values of the following derivatives:

$$\bigcirc (\partial_2 f)(x, y, z) =$$

- $\bigcirc (\partial_1 f)(\Box, \circ, \star) =$
- $\bigcirc (\partial_1 \partial_2 f)(a, b, c) =$
- $\bigcirc (\partial_3^2 f)(299, 1222, 0) =$

Differentiable Manifolds

Exercise 5: Differentiability on a manifold

How to deal with functions and curves in a chart.

Let $(M, \mathcal{O}, \mathcal{A})$ be a smooth *d*-dimensional manifold. Consider a chart (U, x) of the atlas \mathcal{A} together with a smooth curve $\gamma : \mathbb{R} \to U$ and a smooth function $f : U \to \mathbb{R}$ on the domain U of the chart.

Question: Draw a commutative diagram containing the chart domain, chart map, function, curve, and the respective representatives of the function and the curve in the chart.

Solution:

Question: Consider, for d = 2,

 $(x \circ \gamma)(\lambda) := (\cos(\lambda), \sin(\lambda))$ and $(f \circ x^{-1})((x, y)) := x^2 + y^2$.

Using the chain rule, calculate

 $\left(f\circ\gamma\right)'(\lambda)$

explicitly.