Tangent Spaces

Exercise 1: True or false?

These basic questions are designed to spark discussion and as a self-test.

Tick the correct statements, but not the incorrect ones!
a) A tangent vector to a differentiable manifold

O has a length and a direction.
\bigcirc must not be zero.
\bigcirc maps a function on the manifold to the real numbers.
O is of the same dimension as the manifold.
\bigcirc arises as the velocity to some curve through the vector's base point.
b) The tangent space $T_{p} M$ to a d-dimensional differentiable manifold
\bigcirc is of the dimension $2 \cdot \operatorname{dim} M$.
\bigcirc can be defined at every point p of M.
O is no real vector space, because its elements are only tangent vectors.
\bigcirc admits a linear bijection to the vector space $\left(\mathbb{R}^{d}, \oplus, \odot\right)$.
\bigcirc has no tangent vectors in common with a tangent space $T_{q} M$ for $q \neq p$.
c) If (U, x) is a chart for a d-dimensional differentiable manifold, then
\bigcirc the coordinate maps $x^{i}: U \rightarrow \mathbb{R}$ with $i=1, \ldots, d$ are only continuous, not differentiable.
$\bigcirc\left(\mathrm{d} x^{1}\right)_{p}, \ldots,\left(\mathrm{~d} x^{d}\right)_{p}$ constitute a basis of $T_{p}^{*} M$.
O for the basis $\left(\frac{\partial}{\partial x^{1}}\right)_{p}, \ldots,\left(\frac{\partial}{\partial x^{d}}\right)_{p}$ of $T_{p} M$, there is no dual basis in the dual space.
O the components of the vector X with respect to the chart-induced basis are $\left(\mathrm{d} x^{i}\right)_{p}(X)$.
O the expression $\left(\mathrm{d} x^{a}\right)_{p}\left(\left(\frac{\partial}{\partial x^{a}}\right)_{p}\right)$ yields the dimension of the manifold.

Tangent Spaces

Exercise 2: Virtuoso use of the symbol $\left(\frac{\partial}{\partial x^{i}}\right)_{p}$

Translating the symbol into undergraduate analysis symbols and vice versa.

Question: For a smooth function f and a chart (U, x), provide the definition of the expression

$$
\left(\frac{\partial f}{\partial x^{i}}\right)_{p} .
$$

Solution:

Question: Show that, for overlapping charts (U, x) and (V, y), one has

$$
\left(\frac{\partial x^{a}}{\partial y^{m}}\right)_{p}\left(\frac{\partial y^{m}}{\partial x^{b}}\right)_{p}=\delta_{b}^{a}
$$

for any $p \in U \cap V$.

Solution:

Question: After inserting $y^{-1} \circ y$, where y is another chart map on the same chart domain U, at an appropriate position in the definition of the left hand side of

$$
\left(\frac{\partial f}{\partial x^{i}}\right)_{p}=\left(\frac{\partial y^{m}}{\partial x^{i}}\right)_{p}\left(\frac{\partial f}{\partial y^{m}}\right)_{p},
$$

use the undergraduate multi-dimensional chain rule to show that it equals the right hand side.

Solution:

Question: Do the $\operatorname{dim} M$ many quantities defined by the left hand side of the above expression constitute the components of a tensor? If so, what are the valence and the rank of the tensor?

Solution:

Exercise 3: Transformation of vector components

Understanding the vector component transformation law the pedestrian way.

Let the topological manifold $\left(\mathbb{R}^{2}, \mathcal{O}_{\text {st. }}\right)$ be equipped with the atlas $\mathcal{A}=\left\{\left(\mathbb{R}^{2}, x\right),\left(\mathbb{R}^{2}, y\right)\right\}$, where

$$
\begin{aligned}
x: \mathbb{R}^{2} & \rightarrow \mathbb{R}^{2}, & y: \mathbb{R}^{2} & \rightarrow \mathbb{R}^{2} \\
(a, b) & \mapsto(a, b) & (a, b) & \mapsto\left(a, b+a^{3}\right) .
\end{aligned}
$$

Question: Calculate the objects $\left(\frac{\partial x^{i}}{\partial y^{j}}\right)_{p}$!

Solution:

In the lectures, the velocity $v_{\gamma, p}$ of the curve at a point $p=\gamma\left(\lambda_{0}\right)$ has been defined by its action on a smooth function f

$$
v_{\gamma, p}(f):=(f \circ \gamma)^{\prime}\left(\lambda_{0}\right) .
$$

By choosing a chart (U, x), inserting $x^{-1} \circ x$ at the appropriate place in this definition and employing the chain rule, you found the components of the velocity with respect to the chart

$$
\dot{\gamma}_{x}^{i}\left(\lambda_{0}\right):=(x \circ \gamma)^{i^{\prime}}\left(\lambda_{0}\right) .
$$

Now consider the curve

$$
\gamma: \mathbb{R} \rightarrow \mathbb{R}^{2} ; \quad \lambda \mapsto(\lambda,-\lambda) .
$$

Question: Calculate the components $\dot{\gamma}_{x}^{i}\left(\lambda_{0}\right)$ and $\dot{\gamma}_{y}^{i}\left(\lambda_{0}\right)$!

Solution:

Question: With the result of the first question, how could you have obtained the components $\dot{\gamma}_{x}^{i}\left(\lambda_{0}\right)$ from the $\dot{\gamma}_{y}^{i}\left(\lambda_{0}\right)$?

Solution:

THE WE-HERAEUS INTERNATIONAL WINTER SCHOOL ON

GRAVITY AND LIGHT

Tangent Spaces

Exercise 4: The gradient

Not the only covector undergoing an identity crisis.

Given a function f on a manifold M, the level sets of f for a constant $c \in \mathbb{R}$ are defined as

$$
N_{c}(f):=\{p \in M \mid f(p)=c\} .
$$

Question: Formulate the condition for a curve $\gamma: \mathbb{R} \rightarrow M$ to take values solely in one of the level sets of a function f !

Solution:

Question: Now show that the gradient of a function annihilates the velocity vector $v_{\gamma, p}$ for any such curve γ through a point p in $N_{c}(f)$. In other words, show that

$$
(\mathrm{d} f)_{p}\left(v_{\gamma, p}\right)=0 .
$$

Solution:

Tangent Spaces

Exercise 5: Is there a well-defined sum of curves?

On the dangers of defining concepts by use of charts.

Let the topological manifold $\left(\mathbb{R}^{2}, \mathcal{O}_{\text {st. }}\right)$ be equipped with the atlas $\mathcal{A}=\left\{\left(\mathbb{R}^{2}, x\right),\left(\mathbb{R}^{2}, y\right)\right\}$, where

$$
\begin{aligned}
x: \mathbb{R}^{2} & \rightarrow \mathbb{R}^{2}, & y: \mathbb{R}^{2} & \rightarrow \mathbb{R}^{2} \\
(a, b) & \mapsto(a, b) & (a, b) & \mapsto\left(a, b \cdot e^{a}\right) .
\end{aligned}
$$

Question: Is \mathcal{A} a C^{∞}-atlas?

Solution:

Question: On M consider the curves $\gamma: \mathbb{R} \rightarrow M$ and $\delta: \mathbb{R} \rightarrow M$, mapping

$$
\begin{aligned}
& \gamma: \lambda \mapsto(\lambda, 1) \quad \text { and } \\
& \delta: \lambda \mapsto(1, \lambda) .
\end{aligned}
$$

Without referring to any chart, can you give the sum $\gamma+\delta$ of these curves?

Solution:

Question: Calculate the representatives of both curves with respect to both charts! Illustrate the results! Where do the curves in the charts intersect?

Solution:

Recall the definition of the sum of curves with respect to a chart (U, x) from the lectures. There, for curves γ and δ meeting in the common point $\gamma\left(\lambda_{0}\right)=\delta\left(\lambda_{1}\right)$, we defined

$$
\sigma_{x}: \mathbb{R} \rightarrow U, \quad \lambda \mapsto x^{-1}\left(x\left(\gamma\left(\lambda+\lambda_{0}\right)\right)+x\left(\delta\left(\lambda+\lambda_{1}\right)\right)-x\left(\gamma\left(\lambda_{0}\right)\right)\right)
$$

as the sum of γ and δ in the real world.
Question: Implement this construction with our chart $\left(\mathbb{R}^{2}, x\right)$ in order to determine the sum σ_{x} of our curves γ and δ ! Draw the result in the real world.

Solution:

Question: Repeat the construction, but now using the chart $\left(\mathbb{R}^{2}, y\right)$ to obtain the curve σ_{y}. Do you get the same curve in the real world?

Solution:

Question: Show that-despite the above result-the velocity of σ_{x} equals the velocity of σ_{y} at the intersection point.

Solution:

