THE WE-HERAEUS INTERNATIONAL WINTER SCHOOL ON GRAVITY AND LIGHT

Fields

Exercise 1: True or false

These basic questions are designed to spark discussion and as a self-test.

Tick the correct statements, but not the incorrect ones!

a) A bundle

- \bigcirc is uniquely determined by its base space and its total space.
- \bigcirc consists of a smooth manifold and an injective map to a topological manifold.
- $\bigcirc\,$ gives rise to the notion of fibres.
- \bigcirc projection π has open preimages in the total space if fed with open sets of the base space.
- \bigcirc allows to define a section $\sigma: M \to TM$ that has to fulfill $\sigma \circ \pi = \mathrm{id}_{TM}$.
- b) The total space of a tangent bundle over a smooth manifold M
 - \bigcirc is constructed by intersecting all tangent spaces T_pM .
 - \bigcirc has double the dimension of the base space.
 - \bigcirc carries an atlas inherited from the atlas of M.
 - \bigcirc is the target space of a smooth vector field.
 - \bigcirc contains only tangent vectors.
- c) A tensor field on a smooth manifold M
 - \bigcirc is a $C^{\infty}(M)$ -linear map.
 - \bigcirc of valence (r, s) sends r covector fields and s vector fields to a smooth function.
 - \bigcirc can be added to another tensor field on the same manifold.
 - \bigcirc is a smooth function if it is of valence (0,0).
 - \bigcirc has as its components $(r+s)^{\dim M}$ many smooth functions w.r.t. a chart.

THE WE-HERAEUS INTERNATIONAL WINTER SCHOOL ON GRAVITY AND LIGHT

Fields

Exercise 2: Vector fields for practitioners

Recognizing and dealing with vector fields.

Question: Let (U, x) be a chart of a smooth manifold $(M, \mathcal{O}, \mathcal{A})$. Explain why the map

$$\begin{split} \frac{\partial}{\partial x^i} &: U \longrightarrow TU \\ p \mapsto \left(\frac{\partial}{\partial x^i} \right)_p \end{split}$$

is a vector field on U.

Solution:

Question: Show that for smooth functions f and g on M

$$\frac{\partial}{\partial x^{i}}\left(f\cdot g\right)=\frac{\partial f}{\partial x^{i}}\cdot g+f\cdot \frac{\partial g}{\partial x^{i}}$$

after first identifying what the different mathematical objects of this equation are and thus on which space + and \cdot are defined.

Solution:

Question: Expand a vector field χ on the domain of a chart (U, x) in terms of component functions $\chi^i \in C^{\infty}(M)$.

Solution:

Question: By application to χ of which covector field does one obtain the component functions χ^i ?

Solution:

THE WE-HERAEUS INTERNATIONAL WINTER SCHOOL ON GRAVITY AND LIGHT

Fields

Exercise 3: The cotangent bundle $T^*M \xrightarrow{\pi} M$

Constructing the cotangent bundle as a smooth manifold.

We consider the *cotangent bundle* total space T^*M as the disjoint union

$$T^*M := \bigcup_{p \in M}^{\bullet} T_p^*M$$

of all cotangent spaces and define the bundle projection map

$$\pi \colon T^*M \longrightarrow M$$
$$\omega \mapsto \text{the unique } p \text{ with } \omega \in T_p^*M.$$

 $\ensuremath{\mathbf{Question:}}$ Show that

$$\mathcal{O}_{T^*M} := \{ \operatorname{preim}_{\pi}(U) \mid U \in \mathcal{O}_M \}$$

defines a topology on T^*M .

Solution:

Question: Adapting the construction of the tangent bundle $T^*M \xrightarrow{\pi} M$, demonstrated in the lectures, construct a chart (T^*U, ξ_x^*) by defining a chart map

 $\xi_x^*: T^*\!U \longrightarrow \mathbb{R}^{2\dim M}$

for each chart (U, x) of the base space M.

Solution:

Question: Find the inverse ξ_x^{*-1} of such a chart map!

Solution:

Question: To consider smoothness of T^*M , we need to consider chart transition maps on T^*M . Calculate the chart transition map $\xi_y^* \circ \xi_x^{*-1}$.

Solution: $\xi_y^* \circ \xi_x^{*-1} \left(\alpha^1, \dots, \alpha^{\dim M}, \gamma_1, \dots, \gamma_{\dim M} \right) =$

Question: Why is this chart transition map smooth?

Solution: