Connections

Exercise 1: True or false?

These basic questions are designed to spark discussion and as a self-test.

Tick the correct statements, but not the incorrect ones!

- a) A covariant derivative operator ∇_X
 - \bigcirc is $C^{\infty}(M)$ -linear in X.
 - \bigcirc cannot be applied to (0,0)-tensor fields.
 - \bigcirc acts simply as the partial derivative if the manifold is flat.
 - \bigcirc applied to a smooth function is the gradient of this function.
 - \bigcirc is uniquely fixed by choosing $(\dim M)^3$ many connection coefficient functions of an atlas.
- b) Which statements on connections are true?
 - \bigcirc A connection maps a vector field and a (p,q)-tensor field to the real numbers.
 - $\, \odot \,$ A connection satisfies the Leibniz rule.
 - \bigcirc Connection coefficients vanishing in a chart, vanish in the overlap with another chart.
 - \bigcirc The connection coefficients may be defined by ∇ and the chart-induced basis fields.
 - \bigcirc A torsion-free connection has coefficient functions satisfying $\Gamma^{k}{}_{[ab]} = 0$ in all charts.

Connections

Exercise 2: Practical rules for how ∇ acts

How does a covariant derivative act on various tensor fields?

What is the result of the following applications of a torsion-free covariant derivative?

- $\nabla_X f =$
- $(\nabla_X Y)^a =$
- $(\nabla_X \omega)_a =$
- $(\nabla_m T)^a{}_{bc} =$
- $(\nabla_{[m}A)_{n]} =$
- $(\nabla_{[m}\omega)_{nr]} =$

Connections

Exercise 3: Connection coefficients

Vanishing connection coefficients - really vanishing?

Question: Recall how the connection coefficient functions in a chart $(U \cap V, y)$ are related to those in a chart $(U \cap V, x)$?

Solution:

Question: Which class of chart transition maps make the connection coefficient functions appear to transform like a tensor?

Solution:

Question: Let $(M, \mathcal{O}, \mathcal{A}, \nabla)$ be the flat plane. Consider two charts that both cover the upper-half plane, that is all points $(a, b) \in \mathbb{R}^2$ with b > 0, one representing the familiar cartesian coordinates and the familiar polar coordinates on there.

We already know that the chart transition map from cartesian to polar coordinates is given by

$$y \circ x^{-1}(a,b) = \left(\sqrt{a^2 + b^2}, \arccos\left(\frac{a}{\sqrt{a^2 + b^2}}\right)\right),$$

while the inverse transition map from polar coordinates to cartesian ones is

 $x \circ y^{-1}(r, \varphi) = (r \cos \varphi, r \sin \varphi)$ for $r \in \mathbb{R}^+$ and $\varphi \in (0, \pi)$.

Starting from the assumption of vanishing connection coefficient functions in the cartesian chart, calculate the connection coefficients $\Gamma^a{}_{bc(y)}$ with respect to the polar coordinate chart!

Solution:

Connections

Exercise 4: Why, on functions, ∇ reduces to d

Checking the compatibility of the first axiom for a connection with the remaining axioms.

Question: Recall how ∇_X acts on a function $h \in \mathcal{C}^{\infty}(M)$.

Solution:

 $\nabla_X h =$

Question: Complete the sketch of proof below—for the scaling part of the $\mathcal{C}^{\infty}(M)$ -linearity—by

- a) indicating over each S-multiplication on which space it is defined,
- b) giving sufficient justification for each equal sign.

Solution:

$$\nabla_{g \cdot X} h = (g \cdot X)h = g \cdot Xh = g \cdot \nabla_X h$$

Question: Provide analogous proofs for the other axioms.

Solution:

 $\nabla_{X+Y} h =$

 $\nabla_X(h+g) =$

 $\nabla_X(f \cdot g) =$