Connections

Exercise 1: True or false?

These basic questions are designed to spark discussion and as a self-test.

Tick the correct statements, but not the incorrect ones!
a) A covariant derivative operator ∇_{X}
\bigcirc is $C^{\infty}(M)$-linear in X.
O cannot be applied to (0,0)-tensor fields.
\bigcirc acts simply as the partial derivative if the manifold is flat.
\bigcirc applied to a smooth function is the gradient of this function.
\bigcirc is uniquely fixed by choosing $(\operatorname{dim} M)^{3}$ many connection coefficient functions of an atlas.
b) Which statements on connections are true?
\bigcirc A connection maps a vector field and a (p, q)-tensor field to the real numbers.
O A connection satisfies the Leibniz rule.
O Connection coefficients vanishing in a chart, vanish in the overlap with another chart.
O The connection coefficients may be defined by ∇ and the chart-induced basis fields.
\bigcirc A torsion-free connection has coefficient functions satisfying $\Gamma^{k}{ }_{[a b]}=0$ in all charts.

Exercise 2: Practical rules for how ∇ acts

How does a covariant derivative act on various tensor fields?

What is the result of the following applications of a torsion-free covariant derivative?

- $\nabla_{X} f=$
- $\left(\nabla_{X} Y\right)^{a}=$
- $\left(\nabla_{X} \omega\right)_{a}=$
- $\left(\nabla_{m} T\right)^{a}{ }_{b c}=$
- $\left(\nabla_{[m} A\right)_{n]}=$
- $\left(\nabla_{[m} \omega\right)_{n r]}=$

Connections

Exercise 3: Connection coefficients

Vanishing connection coefficients - really vanishing?

Question: Recall how the connection coefficient functions in a chart ($U \cap V, y$) are related to those in a chart $(U \cap V, x)$?

Solution:

Question: Which class of chart transition maps make the connection coefficient functions appear to transform like a tensor?

Solution:

Question: Let $(M, \mathcal{O}, \mathcal{A}, \nabla)$ be the flat plane. Consider two charts that both cover the upper-half plane, that is all points $(a, b) \in \mathbb{R}^{2}$ with $b>0$, one representing the familiar cartesian coordinates and the familiar polar coordinates on there.
We already know that the chart transition map from cartesian to polar coordinates is given by

$$
y \circ x^{-1}(a, b)=\left(\sqrt{a^{2}+b^{2}}, \arccos \left(\frac{a}{\sqrt{a^{2}+b^{2}}}\right)\right),
$$

while the inverse transition map from polar coordinates to cartesian ones is

$$
x \circ y^{-1}(r, \varphi)=(r \cos \varphi, r \sin \varphi) \quad \text { for } r \in \mathbb{R}^{+} \text {and } \varphi \in(0, \pi) .
$$

Starting from the assumption of vanishing connection coefficient functions in the cartesian chart, calculate the connection coefficients $\Gamma^{a}{ }_{b c}(y)$ with respect to the polar coordinate chart!

Solution:

Connections

Exercise 4: Why, on functions, ∇ reduces to d

Checking the compatibility of the first axiom for a connection with the remaining axioms.

Question: Recall how ∇_{X} acts on a function $h \in \mathcal{C}^{\infty}(M)$.

Solution:

$$
\nabla_{X} h=
$$

Question: Complete the sketch of proof below-for the scaling part of the $\mathcal{C}^{\infty}(M)$-linearity-by
a) indicating over each S-multiplication on which space it is defined,
b) giving sufficient justification for each equal sign.

Solution:

$$
\nabla_{g \cdot X} h=(g \cdot X) h=g \cdot X h=g \cdot \nabla_{X} h
$$

Question: Provide analogous proofs for the other axioms.

Solution:

$\nabla_{X+Y} h=$
$\nabla_{X}(h+g)=$
$\nabla_{X}(f \cdot g)=$

