Metric Manifolds

Exercise 1: True or false?

These basic questions are designed to spark discussion and as a self-test.

Tick the correct statements, but not the incorrect ones!

- a) The Levi-Civita connection
 - \bigcirc is torsion-free.
 - \bigcirc is called metric-compatible since it satisfies $\nabla_X g = g$.
 - \bigcirc is the unique affine connection that can be constructed from the data of a metric manifold.
 - \bigcirc gives rise to connection coefficient functions with $\Gamma^a{}_{(bc)} = 0$ in any chart.
 - \bigcirc arises by requiring that the autoparallels are the curves of stationary length.
- b) Which statements about metrics on a *d*-dimensional smooth manifold are correct?
 - \bigcirc A metric with signature (d,d) is called a Riemannian metric.
 - A Lorentzian metric has signature (1, d 1).
 - On a Lorentzian manifold, vectors $X \in T_pM$ are called *g*-null vectors if g(X, X) = 0.
 - \bigcirc A metric provides an inner product on each tangent space T_pM .
 - \bigcirc An inverse metric fed with a covector yields a real number.
- c) Which statements about geodesics and the length of a curve are correct?
 - \bigcirc A Riemannian metric gives rise to a well-defined notion of length of a curve.
 - $\odot\,$ The length of a curve is obviously not invariant under reparametrization of this curve.
 - \bigcirc A geodesic is a curve of minimal length.
 - The condition for a curve to be of stationary length is that it be a solution of the Euler-Lagrange equation for the Lagrangian $\mathcal{L}(X) = \sqrt{g(X, X)}$.
 - \bigcirc A geodesic on a metric manifold satisfies the autoparallel equation.

Metric Manifolds

Exercise 2: Recognizing and dealing with different signatures

Other than (1,1)-tensors, (0,2)-tensors do not have eigenvalues, but signature.

Let g be a symmetric (0, 2)-tensor over some vector space.

Question: You are given the following four sets of g-null vectors in the vector space: the surface of a double cone centered in the origin, a point in the origin, a straight line through the origin and a plane through the origin of the vector space.

Determine the possible signatures of the respective g in each of the four cases.

Question: For each signature you found, indicate the set of vectors of positive length in the drawings.

Metric Manifolds

Exercise 3: Levi-Civita Connection

For vanishing torsion, the Levi-Civita connection is already uniquely determined by the requirement $\nabla g = 0.$

Suppose we have a torsion-free and metric-compatible connection, i.e., vanishing rank-three tensor fields

T = 0 and $\nabla g = 0$.

Question: Recall what T = 0 implies for the connection coefficient functions with respect to a chart.

Solution:

Question: Expand in terms of connection coefficient functions.

Solution:

- (I) $(\nabla_a g)_{bc} =$
- (II) $(\nabla_b g)_{ca} =$
- (III) $(\nabla_c g)_{ab} =$

Question: By adding and/or subtracting (I), (II) and (III) in a clever way, obtain

$$\Gamma^{a}_{\ bc} = \frac{1}{2} \left(g^{-1} \right)^{am} \left(\frac{\partial}{\partial x^{b}} g_{mc} + \frac{\partial}{\partial x^{c}} g_{mb} - \frac{\partial}{\partial x^{m}} g_{bc} \right)$$

and conclude that the conditions $\nabla g = 0$ and T = 0 uniquely determine the connection coefficient functions in terms of the metric.

Metric Manifolds

Exercise 4: Massaging the length functional

Modifications of the length functional that simplify calculations but do not change results.

Question: Let $\gamma : (0,1) \longrightarrow M$ be a smooth curve on a smooth manifold $(M, \mathcal{O}, \mathcal{A})$. Now consider a second curve $\tilde{\gamma} : (0,1) \longrightarrow M$ defined by

$$\tilde{\gamma}(\lambda) := \gamma(\sigma(\lambda))$$

where $\sigma : (0,1) \longrightarrow (0,1)$ is an increasing bijective smooth function. Show that the length of both curves is the same:

$$L[\tilde{\gamma}] = L[\gamma]$$

Solution:

Question: Show that the Euler-Lagrange equations for a Lagrangian \mathcal{T} have precisely the same solutions as the Euler-Lagrange equations for the Lagrangian $\mathcal{L} := \sqrt{\mathcal{T}}$, if of the latter one only selects those solutions that satisfy the condition $\mathcal{T} = 1$ on their parametrization.

Metric Manifolds

Exercise 5: A practical way to quickly determine Christoffel symbols

In a concrete case, rederiving the Euler-Lagrange equations is quicker than using the general formula.

Question: Derive the geodesic equation for the two-dimensional round sphere of radius R, whose metric in some chart (U, x) is given by

$$g_{ab}\left(x^{-1}(\vartheta,\phi)\right) = \left(\begin{array}{cc} R^2 & 0\\ 0 & R^2\sin^2\vartheta \end{array}\right),$$

via a convenient Euler-Lagrange equation. In order to lighten the notation, you may define

$$\vartheta(\lambda) := (x^1 \circ \gamma)(\lambda) \text{ and } \phi(\lambda) := (x^2 \circ \gamma)(\lambda).$$

Solution:

 $\mathbf{Question:}\ \mathrm{Read}\ \mathrm{off}\ \mathrm{the}\ \mathrm{metric-induced}\ \mathrm{connection}\ \mathrm{coefficient}\ \mathrm{functions}\ \mathrm{for}\ \mathrm{the}\ \mathrm{round}\ \mathrm{sphere}.$

Metric Manifolds

Exercise 6: Properties of the Riemann-Christoffel tensor

Various algebraic symmetries that the plain Riemann curvature does not feature.

Question: Show that the chart-induced basis fields act on the coefficient functions as

$$\frac{\partial}{\partial x^c} \left(g^{-1} \right)^{ab} = - \left(g^{-1} \right)^{ar} \left(g^{-1} \right)^{bs} \frac{\partial}{\partial x^c} g_{rs}.$$

Solution:

Question: Use normal coordinates to find an expression for the Riemann-Christoffel tensor

$$R_{abcd} := g_{ak} R^k{}_{bcd}$$

at a given point p in terms of the metric g_{ab} and its first and second derivatives at that very point.

Solution: Question: Similarly, show that $R_{abcd} = R_{cdab}$. Solution:	
Question: Similarly, show that $R_{abcd} = R_{cdab}$. Solution:	
Question: Similarly, show that $R_{abcd} = R_{cdab}$. Solution:	
Question: Similarly, show that $R_{abcd} = R_{cdab}$. Solution:	
Question: Similarly, show that $R_{abcd} = R_{cdab}$. Solution:	
Question: Similarly, show that $R_{abcd} = R_{cdab}$. Solution:	
Question: Similarly, show that $R_{abcd} = R_{cdab}$. Solution:	
Question: Similarly, show that $R_{abcd} = R_{cdab}$. Solution:	
Question: Similarly, show that $R_{abcd} = R_{cdab}$. Solution:	
Question: Similarly, show that $R_{abcd} = R_{cdab}$. Solution:	
Guestion: Similarly, snow that $R_{abcd} = R_{cdab}$. Solution:	
Solution:	
Question: Show that $R_{a[bcd]} = 0$ for the Riemann-Christoffel tensor.	
Solution	
Solution.	