Metric Manifolds

Exercise 1: True or false?

These basic questions are designed to spark discussion and as a self-test.

Tick the correct statements, but not the incorrect ones!
a) The Levi-Civita connection
O is torsion-free.
O is called metric-compatible since it satisfies $\nabla_{X} g=g$.
O is the unique affine connection that can be constructed from the data of a metric manifold.
O gives rise to connection coefficient functions with $\Gamma^{a}{ }_{(b c)}=0$ in any chart.
O arises by requiring that the autoparallels are the curves of stationary length.
b) Which statements about metrics on a d-dimensional smooth manifold are correct?
\bigcirc A metric with signature (d, d) is called a Riemannian metric.
O A Lorentzian metric has signature $(1, d-1)$.
O On a Lorentzian manifold, vectors $X \in T_{p} M$ are called g-null vectors if $g(X, X)=0$.
○ A metric provides an inner product on each tangent space $T_{p} M$.
O An inverse metric fed with a covector yields a real number.
c) Which statements about geodesics and the length of a curve are correct?

O A Riemannian metric gives rise to a well-defined notion of length of a curve.
O The length of a curve is obviously not invariant under reparametrization of this curve.
O A geodesic is a curve of minimal length.
O The condition for a curve to be of stationary length is that it be a solution of the EulerLagrange equation for the Lagrangian $\mathcal{L}(X)=\sqrt{g(X, X)}$.
O A geodesic on a metric manifold satisfies the autoparallel equation.

Metric Manifolds

Exercise 2: Recognizing and dealing with different signatures

Other than (1,1)-tensors, (0,2)-tensors do not have eigenvalues, but signature.

Let g be a symmetric (0,2)-tensor over some vector space.
Question: You are given the following four sets of g-null vectors in the vector space: the surface of a double cone centered in the origin, a point in the origin, a straight line through the origin and a plane through the origin of the vector space.

Determine the possible signatures of the respective g in each of the four cases.

(a)

(c)

(d)

Solution:

(a)
(b)
(c)
(d)

Question: For each signature you found, indicate the set of vectors of positive length in the drawings.

Solution:

Metric Manifolds

Exercise 3: Levi-Civita Connection

For vanishing torsion, the Levi-Civita connection is already uniquely determined by the requirement

$$
\nabla g=0
$$

Suppose we have a torsion-free and metric-compatible connection, i.e., vanishing rank-three tensor fields

$$
T=0 \quad \text { and } \quad \nabla g=0
$$

Question: Recall what $T=0$ implies for the connection coefficient functions with respect to a chart.

Solution:

Question: Expand in terms of connection coefficient functions.

Solution:

(I) $\left(\nabla_{a} g\right)_{b c}=$
(II) $\left(\nabla_{b} g\right)_{c a}=$
(III) $\left(\nabla_{c} g\right)_{a b}=$

Question: By adding and/or subtracting (I), (II) and (III) in a clever way, obtain

$$
\Gamma_{b c}^{a}=\frac{1}{2}\left(g^{-1}\right)^{a m}\left(\frac{\partial}{\partial x^{b}} g_{m c}+\frac{\partial}{\partial x^{c}} g_{m b}-\frac{\partial}{\partial x^{m}} g_{b c}\right)
$$

and conclude that the conditions $\nabla g=0$ and $T=0$ uniquely determine the connection coefficient functions in terms of the metric.

Solution:

Metric Manifolds

Exercise 4: Massaging the length functional

Modifications of the length functional that simplify calculations but do not change results.

Question: Let $\gamma:(0,1) \longrightarrow M$ be a smooth curve on a smooth manifold $(M, \mathcal{O}, \mathcal{A})$. Now consider a second curve $\tilde{\gamma}:(0,1) \longrightarrow M$ defined by

$$
\tilde{\gamma}(\lambda):=\gamma(\sigma(\lambda)),
$$

where $\sigma:(0,1) \longrightarrow(0,1)$ is an increasing bijective smooth function.
Show that the length of both curves is the same:

$$
L[\tilde{\gamma}]=L[\gamma]
$$

Solution:

Question: Show that the Euler-Lagrange equations for a Lagrangian \mathcal{T} have precisely the same solutions as the Euler-Lagrange equations for the Lagrangian $\mathcal{L}:=\sqrt{\mathcal{T}}$, if of the latter one only selects those solutions that satisfy the condition $\mathcal{T}=1$ on their parametrization.

Solution:

Exercise 5: A practical way to quickly determine Christoffel symbols

In a concrete case, rederiving the Euler-Lagrange equations is quicker than using the general formula.

Question: Derive the geodesic equation for the two-dimensional round sphere of radius R, whose metric in some chart (U, x) is given by

$$
g_{a b}\left(x^{-1}(\vartheta, \phi)\right)=\left(\begin{array}{cc}
R^{2} & 0 \\
0 & R^{2} \sin ^{2} \vartheta
\end{array}\right),
$$

via a convenient Euler-Lagrange equation. In order to lighten the notation, you may define

$$
\vartheta(\lambda):=\left(x^{1} \circ \gamma\right)(\lambda) \quad \text { and } \quad \phi(\lambda):=\left(x^{2} \circ \gamma\right)(\lambda) .
$$

Solution:

Question: Read off the metric-induced connection coefficient functions for the round sphere.

Solution:

Exercise 6: Properties of the Riemann-Christoffel tensor

Various algebraic symmetries that the plain Riemann curvature does not feature.

Question: Show that the chart-induced basis fields act on the coefficient functions as

$$
\frac{\partial}{\partial x^{c}}\left(g^{-1}\right)^{a b}=-\left(g^{-1}\right)^{a r}\left(g^{-1}\right)^{b s} \frac{\partial}{\partial x^{c}} g_{r s} .
$$

Solution:

Question: Use normal coordinates to find an expression for the Riemann-Christoffel tensor

$$
R_{a b c d}:=g_{a k} R^{k}{ }_{b c d}
$$

at a given point p in terms of the metric $g_{a b}$ and its first and second derivatives at that very point.

Solution:

Question: Show-in normal coordinates-that $R_{a b c d}=-R_{b a c d}$.

Solution:

Question: Similarly, show that $R_{a b c d}=R_{c d a b}$.
Solution:

Question: Show that $R_{a[b c d]}=0$ for the Riemann-Christoffel tensor.

Solution:

