THE WE-HERAEUS INTERNATIONAL WINTER SCHOOL ON GRAVITY AND LIGHT

Symmetry

Exercise 1: True or false?

These basic questions are designed to spark discussion and as a self-test.

Tick the correct statements, but not the incorrect ones!

- a) Which statements about push-forward and pull-back are correct?
 - \bigcirc The push-forward maps a vector field to a vector field.
 - \bigcirc The pull-back of a covector yields a covector.
 - $\, \odot \,$ One can induce a metric on a smoothly embedded manifold by pulling the metric back from the ambient manifold.
 - $\,\odot\,$ Push-forward and pull-back are linear maps.
 - \bigcirc The push-forward is a (1, 1)-tensor.
 - \bigcirc One can only pull back a (1, 1)-tensor along a bijective map.
- b) Which statements are correct?
 - A Lie subalgebra $L \subset \Gamma(TM)$ is a symmetry of a metric tensor field g if the pull-back of g along the flow of any element of L reproduces g.
 - O The Lie derivative of a vector field Y with respect to a vector field X is the commutator [X, Y].
 - A Lie subalgebra $L \subset \Gamma(TM)$ is a symmetry of a metric tensor field g if the Lie derivative of g with respect to every $X \in L$ vanishes.
 - \bigcirc The Lie derivative acts on a function as the covariant derivative does.

THE WE-HERAEUS INTERNATIONAL WINTER SCHOOL ON GRAVITY AND LIGHT

Symmetry

Exercise 2: Pull-back and push-forward

Formulae for practical men and women.

Question: Consider a smooth map $\phi: M \to N$ between two differentiable manifolds. Show that for a function $f \in C^{\infty}(N)$, the pull-back of the gradient of f is the same as the gradient of the pull-back of f, i.e.

$$\phi^*(\mathrm{d}f) = \mathrm{d}(\phi^*f).$$

Solution:

Question: The push-forward $\phi_*: TM \xrightarrow{\sim} TN$ is a linear map between tangent bundles. Calculate its component functions

$$\phi_*{}^a{}^b := (\mathrm{d} y^a)(\phi_*(\frac{\partial}{\partial x^b}))$$

with respect to charts $(U \subset M, x)$ and $(V \subset N, y)!$

Solution:

Question: Show that the component functions of the pull back ϕ^*g of a metric tensor field are obtained from the component functions of g by

$$(\phi^*g)_{ab}(p) = \left(\frac{\partial(y\circ\phi)^m}{\partial x^a}\right)_p \left(\frac{\partial(y\circ\phi)^n}{\partial x^b}\right)_p g_{mn}(\phi(p)).$$

Solution:

THE WE-HERAEUS INTERNATIONAL WINTER SCHOOL ON GRAVITY AND LIGHT

Symmetry

Exercise 3: Lie derivative—the pedestrian way

The Lie derivative as a tool for investigating symmetries.

Question: Consider the smooth embedding $\iota: S^2 \to \mathbb{R}^3$ of $(S^2, \mathcal{O}, \mathcal{A})$ into $(\mathbb{R}^3, \mathcal{O}_{st}, \mathcal{B})$, which for the familiar spherical chart $(U, x) \in \mathcal{A}$ and $(\mathbb{R}^3, y = id_{\mathbb{R}^3}) \in \mathcal{B}$ is given by

 $y \circ \iota \circ x^{-1} \colon (\vartheta, \varphi) \mapsto (a \cos \varphi \sin \vartheta, b \sin \varphi \sin \vartheta, c \cos \vartheta),$

where a, b and c are positive real numbers. What can you say about the shape of $\iota(S^2)$?

Solution:

Question: Now assume that $(\mathbb{R}^3, \mathcal{O}_{st}, \mathcal{B})$ is additionally equipped with the Euclidean metric g, whose component functions with respect to the chart (\mathbb{R}^3, y) are given by

$$g_{ab}(p) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}_{ab} \quad \text{for any } p \in U.$$

Write down the component functions of $g^{\text{ellipsoid}} := \iota^* g$ with respect to the chart (U, x)!

Solution:

Question: For convenience, denote by (ϑ, φ) the coordinate functions (x^1, x^2) . Check that the vector fields

$$X_{1}(p) = -\sin\varphi(p)\left(\frac{\partial}{\partial\vartheta}\right)_{p} - \cot\vartheta(p)\cos\varphi(p)\left(\frac{\partial}{\partial\varphi}\right)_{p}$$
$$X_{2}(p) = \cos\varphi(p)\left(\frac{\partial}{\partial\vartheta}\right)_{p} - \cot\vartheta(p)\sin\varphi(p)\left(\frac{\partial}{\partial\varphi}\right)_{p}$$
$$X_{3}(p) = \left(\frac{\partial}{\partial\varphi}\right)_{p}$$

constitute a Lie subalgebra of $(\Gamma(TS^2), [\cdot, \cdot])$ and determine its structure constants!

Solution:

Question: Calculate the integral curve of X_3 through the point $p = x^{-1}(\vartheta_0, \varphi_0)$, i.e. the curve γ_p satisfying

 $\gamma_p(0) = p$ and $v_{\gamma_p,\gamma_p(\lambda)} = (X_3)_{\gamma_p(\lambda)}$

in the chart (U, x)!

Solution:

Question: The integral curves γ_p give rise to a one-parameter family of smooth maps $h_{\lambda}^{X_3} \colon S^2 \to S^2$. Calculate the pull-back

$$(h_{\lambda}^{X_3})^* g^{\text{ellipsoid}}$$

of the metric on S^2 . What can you conclude for the Lie derivative $\mathcal{L}_{X_3}g$?

Solution: