Symmetry

Exercise 1: True or false?

These basic questions are designed to spark discussion and as a self-test.

Tick the correct statements, but not the incorrect ones!
a) Which statements about push-forward and pull-back are correct?

O The push-forward maps a vector field to a vector field.
O The pull-back of a covector yields a covector.
O One can induce a metric on a smoothly embedded manifold by pulling the metric back from the ambient manifold.

O Push-forward and pull-back are linear maps.
O The push-forward is a (1,1)-tensor.
O One can only pull back a (1,1)-tensor along a bijective map.
b) Which statements are correct?

O A Lie subalgebra $L \subset \Gamma(T M)$ is a symmetry of a metric tensor field g if the pull-back of g along the flow of any element of L reproduces g.
O The Lie derivative of a vector field Y with respect to a vector field X is the commutator $[X, Y]$.
○ A Lie subalgebra $L \subset \Gamma(T M)$ is a symmetry of a metric tensor field g if the Lie derivative of g with respect to every $X \in L$ vanishes.
O The Lie derivative acts on a function as the covariant derivative does.

Symmetry

Exercise 2: Pull-back and push-forward

Formulae for practical men and women.

Question: Consider a smooth map $\phi: M \rightarrow N$ between two differentiable manifolds. Show that for a function $f \in C^{\infty}(N)$, the pull-back of the gradient of f is the same as the gradient of the pull-back of f, i.e.

$$
\phi^{*}(\mathrm{~d} f)=\mathrm{d}\left(\phi^{*} f\right) .
$$

Solution:

Question: The push-forward $\phi_{*}: T M \xrightarrow{\sim} T N$ is a linear map between tangent bundles. Calculate its component functions

$$
\phi_{*}{ }_{b}^{a}:=\left(\mathrm{d} y^{a}\right)\left(\phi_{*}\left(\frac{\partial}{\partial x^{b}}\right)\right)
$$

with respect to charts $(U \subset M, x)$ and $(V \subset N, y)$!

Solution:

Question: Show that the component functions of the pull back $\phi^{*} g$ of a metric tensor field are obtained from the component functions of g by

$$
\left(\phi^{*} g\right)_{a b}(p)=\left(\frac{\partial(y \circ \phi)^{m}}{\partial x^{a}}\right)_{p}\left(\frac{\partial(y \circ \phi)^{n}}{\partial x^{b}}\right)_{p} g_{m n}(\phi(p)) .
$$

Solution:

Symmetry

Exercise 3: Lie derivative-the pedestrian way

The Lie derivative as a tool for investigating symmetries.

Question: Consider the smooth embedding $\iota: S^{2} \rightarrow \mathbb{R}^{3}$ of $\left(S^{2}, \mathcal{O}, \mathcal{A}\right)$ into $\left(\mathbb{R}^{3}, \mathcal{O}_{\text {st }}, \mathcal{B}\right)$, which for the familiar spherical chart $(U, x) \in \mathcal{A}$ and $\left(\mathbb{R}^{3}, y=\mathrm{id}_{\mathbb{R}^{3}}\right) \in \mathcal{B}$ is given by

$$
y \circ \iota \circ x^{-1}:(\vartheta, \varphi) \mapsto(a \cos \varphi \sin \vartheta, b \sin \varphi \sin \vartheta, c \cos \vartheta),
$$

where a, b and c are positive real numbers. What can you say about the shape of $\iota\left(S^{2}\right)$?

Solution:

Question: Now assume that $\left(\mathbb{R}^{3}, \mathcal{O}_{\mathrm{st}}, \mathcal{B}\right)$ is additionally equipped with the Euclidean metric g, whose component functions with respect to the chart $\left(\mathbb{R}^{3}, y\right)$ are given by

$$
g_{a b}(p)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)_{a b} \quad \text { for any } p \in U .
$$

Write down the component functions of $g^{\text {ellipsoid }}:=\iota^{*} g$ with respect to the chart (U, x) !

Solution:

Question: For convenience, denote by (ϑ, φ) the coordinate functions $\left(x^{1}, x^{2}\right)$. Check that the vector fields

$$
\begin{aligned}
& X_{1}(p)=-\sin \varphi(p)\left(\frac{\partial}{\partial \vartheta}\right)_{p}-\cot \vartheta(p) \cos \varphi(p)\left(\frac{\partial}{\partial \varphi}\right)_{p} \\
& X_{2}(p)=\cos \varphi(p)\left(\frac{\partial}{\partial \vartheta}\right)_{p}-\cot \vartheta(p) \sin \varphi(p)\left(\frac{\partial}{\partial \varphi}\right)_{p} \\
& X_{3}(p)=\left(\frac{\partial}{\partial \varphi}\right)_{p}
\end{aligned}
$$

constitute a Lie subalgebra of $\left(\Gamma\left(T S^{2}\right),[\cdot, \cdot]\right)$ and determine its structure constants!

Solution:

Question: Calculate the integral curve of X_{3} through the point $p=x^{-1}\left(\vartheta_{0}, \varphi_{0}\right)$, i.e. the curve γ_{p} satisfying

$$
\gamma_{p}(0)=p \quad \text { and } \quad v_{\gamma_{p}, \gamma_{p}(\lambda)}=\left(X_{3}\right)_{\gamma_{p}(\lambda)}
$$

in the chart (U, x) !

Solution:

Question: The integral curves γ_{p} give rise to a one-parameter family of smooth maps $h_{\lambda}^{X_{3}}: S^{2} \rightarrow S^{2}$. Calculate the pull-back

$$
\left(h_{\lambda}^{X_{3}}\right)^{*} g^{\text {ellipsoid }}
$$

of the metric on S^{2}. What can you conclude for the Lie derivative $\mathcal{L}_{X_{3}} g$?

Solution:

