THE WE-HERAEUS INTERNATIONAL WINTER SCHOOL ON GRAVITY AND LIGHT

Integration

Exercise 1: Integrals and Volumes

Five basic questions (sparking discussion, you know) and one basic calculation.

Tick the correct statements, but not the incorrect ones!

○ Integration on a manifold requires a notion of orientability.

○ The integral over some chart domain U of a function f on the manifold is simply defined in the chart (U, x) as $\int_U f = \int_{x(U)} d^d \alpha f_{(x)}(\alpha)$.

 \bigcirc Any volume form can be chosen to integrate over an oriented manifold.

 \bigcirc The transformation law for integrals also holds for transition between charts.

 \bigcirc The component functions of the volume form satisfy $\Omega_{i_1i_2...i_d} = \Omega_{[i_1i_2...i_d]}$.

Question: Calculate the volume of the round sphere S^2 of radius R, i.e.,

$$\operatorname{vol}(S^2) = \int_{S^2} 1.$$

Solution: