Exercise 1: Geodesics in a Schwarzschild spacetime

Deriving the geodesic equations for the Schwarzschild metric and solving them

Consider a manifold equipped with the Schwarzschild metric

$$
g_{a b}=\left(\begin{array}{cccc}
1-\frac{2 G M}{r} & 0 & 0 & 0 \\
0 & -\frac{1}{1-\frac{2 G M}{r}} & 0 & 0 \\
0 & 0 & -r^{2} & 0 \\
0 & 0 & 0 & -r^{2} \sin ^{2} \theta
\end{array}\right)
$$

In the following, we will use the following notation for some chart (U, x) that may cover an arbitrarily large part of the manifold. For a curve $\gamma: \mathbb{R} \rightarrow U$, we have

$$
\begin{aligned}
t(\lambda):=\left(x^{0} \circ \gamma\right)(\lambda)=\gamma_{(x)}^{0}, & r(\lambda):=\left(x^{1} \circ \gamma\right)(\lambda)=\gamma_{(x)}^{1} \\
\theta(\lambda):=\left(x^{2} \circ \gamma\right)(\lambda)=\gamma_{(x)}^{2}, & \varphi(\lambda):=\left(x^{3} \circ \gamma\right)(\lambda)=\gamma_{(x)}^{3}
\end{aligned}
$$

Question: Write down the Lagrangian $L=g_{a b} \dot{\gamma}_{(x)}^{a} \dot{\gamma}_{(x)}^{b}$!

Solution:

Question: The Lagrangian can be parametrized by λ in such a way that $L=1$ for all λ. This will prove useful later on.
There are four Euler-Lagrange equations for this Lagrangian. Derive the one with respect to the function $t(\lambda)$!

Solution:

Question: Show that the Lie derivative of g with respect to the vector field $K_{t}:=\frac{\partial}{\partial t}$ vanishes. What does this mean?

Solution:

Question: The exact form of the conserved quantity is given by $\left(K_{t}\right)_{a}\left(x^{a}\right)^{\prime}(\lambda)=$ const. (without proof). Derive an expression for the quantity $t^{\prime}(\lambda)$ appearing in the Lagrangian!

Solution:

Question: Moreover, we find so called "spherical symmetry", that is, the Lie derivative of g with respect to the already known vector fields

$$
\begin{aligned}
& X_{1}=\sin \varphi \frac{\partial}{\partial \theta}+\cot \theta \cos \varphi \frac{\partial}{\partial \varphi} \\
& X_{2}=\cos \varphi \frac{\partial}{\partial \theta}-\cot \theta \sin \varphi \frac{\partial}{\partial \varphi} \\
& X_{3}=\frac{\partial}{\partial \varphi}
\end{aligned}
$$

vanishes. Which physical quantity is conserved by this symmetry?

Solution:

Question: Due to X_{1} and X_{2} (without proof), one can fix the motion to a plane of constant $\theta=\frac{\pi}{2}$. How can you derive an expression for the remaining term $\varphi^{\prime}(\lambda)$?

Solution:

Question: Use the fact that $L=1$ on the parametrization. Insert the previously obtained results and take all terms not containing E to one side!

Solution:

Question: Can you interpret the terms appearing in this expression?

Schwarzschild Spacetime

Exercise 2: Gravitational redshift

Light propagation in a Schwarzschild spacetime

Consider a spacetime equipped with Schwarzschild metric as well as two observers 1 and 2 at rest in their respective system of reference $(\dot{r}=0, \dot{\theta}=0, \dot{\varphi}=0)$. The observers sit at the same θ and ϕ, while $r_{1}<r_{2}$.

Question: Derive an expression for $t^{\prime}(\lambda)$ using the Lagrangian from the previous exercise!

Solution:

Question: Observer 1 emits photons that observer 2 detects. The gap between two photon emissions is $\Delta \lambda_{1}$. Find the gap $\Delta \lambda_{2}$ seen by observer 2 !

Solution:

Question: Consider the ratio of the frequencies $\frac{\omega_{2}}{\omega_{1}}$. What happens for observer 2 being approximately at infinity? What happens when sending r_{1} to the Schwarzschild radius $r_{s}=2 G M$?

