Commented proof for Parseval's theorem, used in F. Schuller - QM18 - Fourier Operator¹.

Note that this theorem seems to also be referred to as Plancherel identity/theorem, for example in Teschl.

Definition 1. The Fourier operator is the linear map $\mathcal{F}: S(\mathbb{R}^d) \to S(\mathbb{R}^d)$ defined for $x \in \mathbb{R}^d$ by:

$$(\mathcal{F}(f))(x) := \frac{1}{(2\pi)^{d/2}} \int_{\mathbb{R}^d} \exp\left(-ixy\right) f(y) d^d y$$

Theorem 1. $\mathcal{F}: S(\mathbb{R}^d) \to S(\mathbb{R}^d)$ is invertible and:

$$\mathcal{F}^{-1}(g)(x) = \frac{1}{(2\pi)^{d/2}} \int_{\mathbb{R}^d} \exp(ipx)g(p)d^dp$$

Proof. See https://tales.mbivert.com/on-fourier-transform-inverse-proof/.

Theorem 2 (Parseval's theorem). Let $f \in S(\mathbb{R}^d)$.

$$\int_{\mathbb{R}^d} |\mathcal{F}(f)(p)|^2 d^d p = \int_{\mathbb{R}^d} |f(x)|^2 d^d x$$

Saying it otherwise, the Fourier operator preserves the L^2 norm.

Proof. We know from \mathbb{C} -analysis² that, with α^* the \mathbb{C} -conjugate of $\alpha \in \mathbb{C}$:

$$\alpha \alpha^* = |\alpha|^2$$

Hence:

$$f(x)(f(x))^* = |f(x)|^2;$$
 $\mathcal{F}(f)(p)(\mathcal{F}(f)(p))^* = |\mathcal{F}(f)(p)|^2$

From the invertibility of the Fourier transform, we have:

$$f(x) = (\mathcal{F}^{-1}(\mathcal{F}(f)))(x) = \frac{1}{(2\pi)^{d/2}} \int_{\mathbb{R}^d} \exp(ipx)(\mathcal{F}(f))(p)d^dp$$

And so:

$$(f(x))^* = \frac{1}{(2\pi)^{d/2}} \int_{\mathbb{R}^d} \exp(-ipx)((\mathcal{F}(f))(p))^* d^d p$$

Indeed, we're integrating on \mathbb{R}^d , and not on \mathbb{C}^3 , so for $\phi : \mathbb{R}^d \to \mathbb{C}$, using the linearity of the Lebesgue integral:

$$\left(\int_{\mathbb{R}^d} \phi(p) d^d p\right)^* := \left(\int_{\mathbb{R}^d} \Re(\phi(p)) d^d p + i \int_{\mathbb{R}^d} \Im(\phi(p)) d^d p\right)^* \\
= \int_{\mathbb{R}^d} \Re(\phi(p)) d^d p - i \int_{\mathbb{R}^d} \Im(\phi(p)) d^d p \\
= \int_{\mathbb{R}^d} \left(\underbrace{\Re(\phi(p)) - i \Im(\phi(p))}_{=:(\phi(p))^*}\right) d^d p \\
= \int_{\mathbb{R}^d} (\phi(p))^* d^d p$$

And this holds in particular for $\phi(p) = \exp(ipx)(\mathcal{F}(f))(p)$. We can then expand the right-hand-side of the theorem:

¹This is used to prove the boundedness of the Fourier operator on Schwartz space (its operator norm is finite), which allows us to infer via the BLT theorem, as $S(\mathbb{R}^d)$ is dense on $L^2(\mathbb{R}^d)$, that $\mathcal{F}: S(\mathbb{R}^d) \to S(\mathbb{R}^d)$ is uniquely extensible to $L^2(\mathbb{R}^d)$. The BLT theorem was proved and the operator norm was defined in F. Schuller - QM02 - Banach Spaces

This can be shown by simple calculation, e.g. set $\alpha = x + iy$

³The integral of such functions was defined in F. Schuller - QM06 - Integration of measurable functions

$$\int_{\mathbb{R}^d} |f(x)|^2 d^dx = \int_{\mathbb{R}^d} f(x)(f(x))^* d^dx$$

$$(|f(x)|^2 = f(x)(f(x))^*)$$

$$= \int_{\mathbb{R}^d} f(x) \left(\frac{1}{(2\pi)^{d/2}} \int_{\mathbb{R}^d} \exp\left(-ipx\right)((\mathcal{F}(f))(p))^* d^dp\right) d^dx$$
(inserting our previous expression for $(f(x))^*$)
$$= \int_{\mathbb{R}^d} ((\mathcal{F}(f))(p))^* \left(\underbrace{\frac{1}{(2\pi)^{d/2}} \int_{\mathbb{R}^d} \exp\left(-ipx\right) f(x) d^dx}_{=:\mathcal{F}(f)(p)}\right) d^dp$$
(Fubini)
$$= \int_{\mathbb{R}^d} \underbrace{((\mathcal{F}(f))(p))^* \mathcal{F}(f)(p)}_{=|\mathcal{F}(f)(p)|^2} d^dp$$
(Fourier transform identification)
$$= \int_{\mathbb{R}^d} |\mathcal{F}(f)(p)|^2 d^dp$$