The Theoretical Minimum

Classical Mechanics - Solutions
I01E03
Last version: tales.mbivert.com/on-the-theoretical-minimum-solutions/ or github.com/mbivert/ttm
M. Bivert

May 10, 2023

Exercise 1. Show that the magnitude of a vector satisfies $|\vec{A}|^{2}=\vec{A} \cdot \vec{A}$.
Remark 1. We'll again use a bold font to denote vectors instead of arrows and use a slightly different symbol for the magnitude; the change can be summed up by stating: $\|\boldsymbol{u}\|=|\vec{u}|(=u)$.

Let's recall that the magnitude of a vector was defined as:

$$
\|\boldsymbol{u}\|=\sqrt{u_{x}^{2}+u_{y}^{2}+u_{z}^{2}}
$$

And the dot product between two vectors as:

$$
\boldsymbol{u} \cdot \boldsymbol{v}=u_{x} v_{x}+u_{y} v_{y}+u_{z} v_{z}
$$

From there, we quickly reach the expected result:

$$
\begin{aligned}
\boldsymbol{u} \cdot \boldsymbol{u} & =u_{x} u_{x}+u_{y} u_{y}+u_{z} u_{z} \\
& =u_{x}^{2}+u_{y}^{2}+u_{z}^{2} \\
& =\left(\sqrt{u_{x}^{2}+u_{y}^{2}+u_{z}^{2}}\right)^{2} \\
& =\|\boldsymbol{u}\|^{2} \square
\end{aligned}
$$

