The Theoretical Minimum

Classical Mechanics - Solutions
I01E05
Last version: tales.mbivert.com/on-the-theoretical-minimum-solutions/ or github.com/mbivert/ttm
M. Bivert

May 10, 2023

Exercise 1. Determine which pair of vectors are orthogonal. $(1,1,1),(2,-1,3),(3,1,0),(-3,0,2)$.
This is again an immediate application of dot product formula. We'll respectively name the vectors \boldsymbol{A}, $\boldsymbol{B}, \boldsymbol{C}$ and \boldsymbol{D}; let's start by plotting them:

Right before this exercise, the authors wrote:
An important property of the dot product is that it is zero if the vectors are orthogonal.
Let us recall the "components-based" dot product formula we'll be using:

$$
\boldsymbol{u} \cdot \boldsymbol{v}=u_{x} v_{x}+u_{y} v_{y}+u_{z} v_{z}
$$

Then, it's just a matter of crunching numbers:

$$
\begin{array}{rlrl}
\boldsymbol{A} \cdot \boldsymbol{B} & =A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z} & \boldsymbol{A} \cdot \boldsymbol{C} & =A_{x} C_{x}+A_{y} C_{y}+A_{z} C_{z} \\
& =(1 \times 2)+(1 \times(-1))+(1 \times 3) & & =(1 \times 3)+(1 \times 1)+(1 \times 0) \\
& =4 & & =4 \\
\boldsymbol{A} \cdot \boldsymbol{D} & =A_{x} D_{x}+A_{y} D_{y}+A_{z} D_{z} & \boldsymbol{B} \cdot \boldsymbol{C} & =B_{x} C_{x}+B_{y} C_{y}+B_{z} C_{z} \\
& =(1 \times(-3))+(1 \times 0)+(1 \times 2) & & =(2 \times 3)+(-1 \times 1)+(3 \times 0) \\
& =-1 & & =5 \\
\boldsymbol{B} \cdot \boldsymbol{D} & =B_{x} D_{x}+B_{y} D_{y}+B_{z} D_{z} & \boldsymbol{D} \cdot \boldsymbol{C} & =D_{x} C_{x}+D_{y} C_{y}+D_{z} C_{z} \\
& =(2 \times(-3))+(-1 \times 0)+(3 \times 2) & & =(-3 \times 3)+(0 \times 1)+(2 \times 0) \\
& =0 & & =-9
\end{array}
$$

Hence, the only two orthogonal vectors are \boldsymbol{B} and \boldsymbol{D}, or $(2,-1,3)$ and $(-3,0,2)$.

