The Theoretical Minimum

Classical Mechanics - Solutions
I02E01
Last version: tales.mbivert.com/on-the-theoretical-minimum-solutions/ or github.com/mbivert/ttm
M. Bivert

May 10, 2023

Exercise 1. Determine the indefinite integral of each of the following expressions by reversing the process of differentiation and adding a constant.

$$
\begin{aligned}
f(t) & =t^{4} \\
f(t) & =\cos t \\
f(t) & =t^{2}-2
\end{aligned}
$$

Because this is the first integration exercise, we'll go slow. We will "implement" the reversing of the process of differentiation by applying the fundamental theorem of calculus, on a few previously established differentiation results; let's recall those:

$$
\begin{aligned}
\frac{d}{d t} t^{n} & =n t^{n-1} \\
\frac{d}{d t} \sin t & =\cos t
\end{aligned}
$$

Let's start by integrating both sides of each equation:

$$
\begin{aligned}
\int \frac{d}{d t} t^{n} d t & =\int n t^{n-1} d t \\
\int \frac{d}{d t} \sin t d t & =\int \cos t d t
\end{aligned}
$$

Let's then recall the second form of the fundamental theorem of calculus given in the book:

$$
\int \frac{d}{d t} f d t=f(t)+c, \quad c \in \mathbb{R}
$$

So our previous equations can be rewritten as:

$$
\begin{aligned}
t^{n}+c & =\int n t^{n-1} d t, & c \in \mathbb{R} \\
\sin t+c & =\int \cos t d t, & c \in \mathbb{R}
\end{aligned}
$$

Which are, to syntactical differences, the formulas given in the book. In addition to those, we will also rely on the linearity of the integration, which essentially is the combination of the sum rule for integration and multiplication by a constant rule for integration, both being analogues of what we had for differentiation, and which can be summed up by:

Theorem 1 (linearity of integration).

$$
\left(\forall(\alpha, \beta) \in \mathbb{R}^{2}\right),\left(\forall(\varphi, \psi) \in\left(C^{0}\right)^{2}\right) \quad \int \alpha \varphi+\beta \psi=\alpha \int \varphi+\beta \int \psi
$$

Remark 1. C^{0} refers to the class ("set") of continuous functions; actually, mathematically-wise, it would suffice for the functions to be "partially continuous" so as to be integrable; in the context of physics, requiring them to be continuous is reasonable.

Remark 2. We're using the following "shortcut" notation:

$$
\int \varphi=\int \varphi(t) d t
$$

or for a more involved expression:

$$
\int \alpha \varphi+\beta \psi=\int(\alpha \varphi(t)+\beta \psi(t)) d t
$$

Proof. We can establish this result, again to syntactical differences, for instance through a similar process as we've just used for t^{n} and cos, that is, by integrating differentiation results:

$$
\begin{aligned}
\frac{d}{d t}(\alpha \varphi+\beta \psi)(t) & =\alpha \varphi^{\prime}(t)+\beta \psi^{\prime}(t) \\
\Leftrightarrow \quad \int \frac{d}{d t}(\alpha \varphi+\beta \psi)(t) & =\int \alpha \varphi^{\prime}(t)+\beta \psi^{\prime}(t) d t \\
\Leftrightarrow \quad(\alpha \varphi+\beta \psi)(t) & =\int \alpha \varphi^{\prime}(t)+\beta \psi^{\prime}(t) d t \\
\Leftrightarrow \quad \int \quad \alpha \varphi^{\prime}+\beta \psi^{\prime} & =\alpha \int \varphi^{\prime}+\beta \int \psi^{\prime}
\end{aligned}
$$

$f(t)=t^{4}$
This is a simple application of:

$$
\int n t^{n-1} d t=t^{n}+c, \quad c \in \mathbb{R}
$$

with $n=4$; using the linearity of integration:

$$
\begin{aligned}
\int 5 t^{5-1} d t & =t^{5}+c, \quad c \in \mathbb{R} \\
\Leftrightarrow \int t^{4} d t & =\quad \frac{1}{5} t^{5}+c
\end{aligned}
$$

Remark 3. We can check the result by differentiating it
$f(t)=\cos t$
An even more direct application of the formulas established earlier:

$$
\int \cos t d t=\sin t+c, \quad c \in \mathbb{R}
$$

Remark 4. Again, we can check the result using differentiation: we know from earlier that the derivative of a constant is zero, that of sine is cosine, and that the derivative of a sum is the sum of the derivatives.

$$
f(t)=t^{2}-2
$$

Note that there's a special case for:

$$
\int n t^{n-1} d t=t^{n}+c, \quad c \in \mathbb{R}
$$

when $n=1$:

$$
\int 1 \times t^{0} d t=\int d t=t^{1}+c=t+c, \quad c \in \mathbb{R}
$$

More generally, by linearity of the integration:

$$
(\forall \alpha \in \mathbb{R}) \quad \int \alpha d t=\alpha \int d t=\alpha t+c, \quad c \in \mathbb{R}
$$

And so we have:

$$
\int t^{2}-2 d t=\int t^{2} d t-2 \int d t=\frac{1}{3} t^{3}-2 t+c, \quad c \in \mathbb{R}
$$

Which again is elementary to verify by differentiation.

