The Theoretical Minimum

Classical Mechanics - Solutions

I02E02
Last version: tales.mbivert.com/on-the-theoretical-minimum-solutions/ or github.com/mbivert/ttm
M. Bivert

May 10, 2023

Exercise 1. Use the fundamental theorem of calculus to evaluate each integral from Exercise 1 with limits of integration being $t=0$ to $t=T$.

We're going to build on the indefinite integrals we've just computed in I02E01, and simply evaluate the difference of the primitives between $t=T$ and $t=0$.

Remark 1. There are two common notations to evaluate a primitive between two values; I'll use the second one, out of habit. Let's recall the fundamental theorem of calculus along the way:

$$
\left.F(t)\right|_{a} ^{b}=[F(t)]_{a}^{b} \triangleq \int_{a}^{b} F^{\prime}(t) d t=F(b)-F(a)
$$

$f(t)=t^{4}$
The primitive was:

$$
\frac{1}{5} t^{5}+c, \quad c \in \mathbb{R}
$$

Evaluated as expected gives:

$$
\left[\frac{1}{5} t^{5}+c\right]_{0}^{T}=\frac{1}{5} T^{5}+c-\left(\frac{1}{5} 0^{5}+c\right)=\frac{1}{5} T^{5}
$$

Remark 2. Note how the constant of integration gets canceled. This will happen systematically here.
$f(t)=\cos t$
The primitive was:

$$
\sin t+c, \quad c \in \mathbb{R}
$$

Evaluated as expected gives:

$$
[\sin t+c]_{0}^{T}=\sin T-\underbrace{\sin 0}_{=0}=\sin T
$$

$f(t)=t^{2}-2$
The primitive was:

$$
\frac{1}{3} t^{3}-2 t+c, \quad c \in \mathbb{R}
$$

Evaluated as expected gives:

$$
\left[\frac{1}{3} t^{3}-2 t+c\right]_{0}^{T}=\frac{1}{3} T^{3}-2 T
$$

