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Exercise 1. Treat the expressions from FEzxercise 1 as expressions for the acceleration of a particle.
Integrate them once, with respect to time, and determine the velocities, and a second time to determine
the trajectories. Because we will use t as one of the limits of integration we will adopt the dummy
integration variable t'. Integrate them fromt' =0 to t' =t.
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Conceptually, the exercise seems to be about creating functions from integrals, by having a variable of

the integration limit being a function parameter, which forces to use a different name for the integration
variable; multiple choices are obviously possible, as long as the result is consistent:

o(t) = /O o(T) dT

o(t) = [ot'4dt’

Let’s recall our results from either 102E01| or 102E02. If we work from the former, we first would need
to change the variable name from the primitive, say to ¢, and evaluate the indefinite integral between ¢
and 0. Working from the later, we would need to replace T by t.
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Now we can repeat the same process to compute the position z(t):

o) = /O o) dt’
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v(t) = fz cost'dt’
Same exact process:
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o(t) = [o(t'2 —2)dt’
No surprises here either:
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