The Theoretical Minimum

Classical Mechanics - Solutions
I02E04
Last version: tales.mbivert.com/on-the-theoretical-minimum-solutions/ or github.com/mbivert/ttm
M. Bivert

May 10, 2023

Exercise 1. Finish evaluating

$$
\int_{0}^{\frac{\pi}{2}} x \cos x d x
$$

We will re-compute the integral from the beginning.
Let's start by recalling the formula for the integration by parts, given two real valued functions φ and ψ continuously differentiable on $[a, b] \subset \mathbb{R}$:

$$
\int_{a}^{b} \varphi^{\prime}(x) \psi(x) d x=[\varphi(x) \psi(x)]_{a}^{b}-\int_{a}^{b} \varphi(x) \psi^{\prime}(x) d x
$$

Now, in our integral, let's identify:

$$
\begin{aligned}
\varphi^{\prime}(x) & =x \\
\psi(x) & =\cos x
\end{aligned}
$$

From which we have immediately:

$$
\begin{aligned}
\varphi(x) & =\frac{1}{2} x^{2} \\
\psi^{\prime}(x) & =\sin x
\end{aligned}
$$

Our integral then becomes:

$$
\int_{0}^{\pi / 2} x \cos x d x=\left[\frac{1}{2} x^{2} \cos x\right]_{0}^{\pi / 2}-\int_{0}^{\pi / 2} \frac{1}{2} x^{2} \sin x d x
$$

Well, it didn't really helped us, didn't it? But this gives us a clue on what perhaps we should try: while the sine/cosine will essentially oscillate between each other when integrating/differentiating, the x will square when being integrated, but will vanish when being differentiated. So instead, let's identify things this way:

$$
\begin{aligned}
\varphi^{\prime}(x) & =\cos x ; & & \varphi(x) & & \sin x \\
\psi(x) & =x ; & & \psi^{\prime}(x) & = & 1
\end{aligned}
$$

And now the integral becomes:

$$
\begin{aligned}
\int_{0}^{\pi / 2} x \cos x d x & =[x \sin x]_{0}^{\pi / 2}-\int_{0}^{\pi / 2} \sin x d x \\
& =\frac{\pi}{2}+[\cos x]_{0}^{\pi / 2} \\
& =\frac{\pi}{2}-1
\end{aligned}
$$

