The Theoretical Minimum

Classical Mechanics - Solutions
L02E06
Last version: tales.mbivert.com/on-the-theoretical-minimum-solutions/ or github.com/mbivert/ttm
M. Bivert

May 10, 2023

Exercise 1. How long does it take for the oscillating particle to go through one full cycle of motion?
We're in the case of a particle oscillating in one dimension. Its motion, known as the simple harmonic motion, is described by:

$$
x(t)=\sin (\omega t)
$$

Essentially, $x(t)$ will correspond to the vertical component of a point moving on the unit circle, located by an angle ωt.

To fix things, consider the case of a particle starting at an extreme position, say $x=1$ (at the top of the north hemisphere of the unit circle). It will need to go down to $x=-1$, and then back up to $x=1$. In the mean time, the corresponding point on the unit circle would have walked a full circle, or 2π radians.

So we're looking for the time T that it will take for us to move by an angle 2π, knowing that we move at a speed of ω radians per unit of time (i.e. $\omega_{t=0}=0, \omega_{t=1}=\omega, \omega_{t=2}=2 \omega, \ldots$):

$$
\omega T=2 \pi \Leftrightarrow T=\frac{2 \pi}{\omega}
$$

Remark 1. T is commonly called the period of motion.

