The Theoretical Minimum Classical Mechanics - Solutions L02E08

 $Last\ version:\ tales.mbivert.com/on-the-theoretical-minimum-solutions/\ or\ github.com/mbivert/ttm$

M. Bivert

May 10, 2023

Exercise 1. Calculate the velocity, speed and acceleration for each of the following position vectors. If you have graphing software, plot each position vector, each velocity vector, and each acceleration vector.

$$\vec{r} = (\cos \omega t, e^{\omega t})$$

$$\vec{r} = (\cos(\omega t - \phi), \sin(\omega t - \phi))$$

$$\vec{r} = (c \cos^3 t, c \sin^3 t)$$

$$\vec{r} = (c(t - \sin t), c(1 - \cos t))$$

Let's recall that each component of the velocity and acceleration vectors are defined respectively as the derivative and second derivative of the corresponding component of the position vector:

$$\begin{aligned} \boldsymbol{r}(t) &= (\boldsymbol{x}(t), \boldsymbol{y}(t)) \\ \boldsymbol{v}(t) &= \boldsymbol{r}(t) &= (\dot{\boldsymbol{x}}(t), \dot{\boldsymbol{y}}(t)) \\ \boldsymbol{a}(t) &= \boldsymbol{v}(t) = \boldsymbol{r}(t) &= (\ddot{\boldsymbol{x}}(t), \ddot{\boldsymbol{y}}(t)) \end{aligned}$$

So this is just a differentiation exercise in disguise. We'll be using a fast pace here (80% of the work is about applying the chain rule); if you need a slower approach, see for instance L02E01, where we go in-depth on how to apply common differentiation rules.

$$r_0(t) = (\cos(\omega t), e^{\omega t})$$

Figure 1: $\omega = 1$; $\mathbf{r}_0(t) = (\cos(\omega t), e^{\omega t})$ Figure 2: $\omega = 1$; $v_0(t) = (-\omega \sin(\omega t), \omega e^{\omega t})$ Figure 3: $\omega = 1$; $\boldsymbol{a}_0(t) = (-\omega^2 \cos(\omega t), \omega^2 e^{\omega t})$

Figure 4: $\omega = 1.2;$ $\boldsymbol{r}_0(t) = (\cos(\omega t), e^{\omega t})$ Figure 5: $\omega = 1.2;$ $\boldsymbol{v}_0(t) = (-\omega \sin(\omega t), \omega e^{\omega t})$

Figure 6:
$$\omega = 1.2$$
;
 $\boldsymbol{a}_0(t) = (-\omega^2 \cos(\omega t), \omega^2 e^{\omega t})$

Remark 1. Increasing ω will:

- For the position, increase the distance at which we travel in the y direction; the distance in the x direction will be the same, because it's constrained by a cos, but we'll get there faster:
- For the velocity, we will go faster in both the x and y directions; we've plotted in a fainted blue on the second graph the $v_0(t)$ for $\omega = 1$ for comparison, because the effect in the x direction is small;
- And obviously if the velocity increases, the acceleration must increase accordingly, which it does, quadratically, both in the x and y directions (again, we've plotted in a fainted blue on the second graph $a_0(t)$ for $\omega = 1$ for comparison).

 $r_1(t) = (\cos(\omega t - \phi), \sin(\omega t - \phi))$

$$\begin{aligned} \boldsymbol{r_1}(t) &= (\cos(\omega t - \phi), \sin(\omega t - \phi)) \\ \boldsymbol{v_1}(t) &= \boldsymbol{r_1}(t) &= \boxed{(-\omega \sin(\omega t - \phi), \omega \cos(\omega t - \phi)))} \\ \boldsymbol{a_1}(t) &= \boldsymbol{v_1}(t) = \boldsymbol{r_1}(t) &= \boxed{(-\omega^2 \cos(\omega t - \phi), -\omega^2 \sin(\omega t - \phi)))} &= -\omega^2 \boldsymbol{r_1}(t) \end{aligned}$$

Remark 2. All those plots were made with $t \in [-\pi/4, \pi/3]$ so as to make more visible the effect of changing the phase ϕ , which only alters our starting/ending point. The alteration would have been hidden were t to have gone through an interval wider or equal than 2π . An arrow has been added to indicate the ending point.

 ω is the angular velocity, or the number of radians the particle move per unit of time. Naturally, if it's increased, the particle will go further, faster; the increase in speed will demand a corresponding increase in acceleration.

 $r_2(t) = c(\cos t)^3, c(\sin t)^3)$

 a_2 is the most complex derivative for this exercise. We start by applying the product rule (uv = u'v + uv'), and the chain rule on one of the resulting factor.

$$\begin{aligned} \mathbf{r_2}(t) &= (c\cos^3 t, c\sin^3 t) \\ \mathbf{v_2}(t) &= \mathbf{r_2}(t) &= \overline{3c(-\sin t\cos^2 t, \cos t\sin^2 t)} \\ \mathbf{a_2}(t) &= \mathbf{v_2}(t) = \mathbf{r_2}(t) &= 3c(-\cos t\cos^2 t + (-\sin t)(-\sin t)(2\cos t), -\sin t\sin^2 t + \cos t\cos t2\sin t) \\ &= \overline{3c((\cos t)(2\sin^2 t - \cos^2 t), (\sin t)(2\cos^2 t - \sin^2 t))} \end{aligned}$$

Remark 3. We may be able to simplify the expression of the acceleration a_2 .

Figure 13: $c = 0.5, 1, 1.5; \mathbf{r}_2(t) = (c \cos^3 t, c \sin^3 t)$ Figure 14: $c = 0.5, 1, 1.5; \mathbf{v}_2(t) = 3c(-\sin t \cos^2 t, \cos t \sin^2 t)$

Figure 15: c = 0.5, 1, 1.5 (blue, orange, red); $a_2(t) = 3c((\cos t)(2\sin^2 t - \cos^2 t), (\sin t)(2\cos^2 t - \sin^2 t))$

Remark 4. We see from the equations that c is a scaling factor, operating on both axes. If we increase it, we will go higher (y-axis) and further away (x-axis) in the same amount of time t, hence we'll need greater speed, in both axis, and greater acceleration, again on both axes.

 $r_3(t)=(c(t-\sin t),c(1-\cos t))$

$$\begin{aligned} \mathbf{r_3}(t) &= (c(t-\sin t), c(1-\cos t)) \\ \mathbf{v_3}(t) &= \mathbf{r_3}(t) &= \boxed{c(1-\cos t, \sin t)} \\ \mathbf{a_3}(t) &= \mathbf{v_3}(t) = \mathbf{r_3}(t) &= \boxed{c(\sin t, \cos t)} \end{aligned}$$

Remark 5. As for the previous exercise, c is a scaling factor, with the same kind of impact as before.