The Theoretical Minimum

Classical Mechanics - Solutions
L03E01
Last version: tales.mbivert.com/on-the-theoretical-minimum-solutions/ or github.com/mbivert/ttm
M. Bivert

May 10, 2023

Exercise 1. Given a force that varies with time according to $F=2 t^{2}$, and with the initial condition at time zero, $x(0)=\pi$, use Aristotle's law to find $x(t)$ at all times.

Let us recall that Aristotle's law of motion is defined, for a one-dimensional particle (otherwise, $F(t)$ and $x(t)$ would be vector-values functions $\boldsymbol{F}(t)$ and $\boldsymbol{x}(t))$ earlier in the book as:

$$
\frac{d}{d t} x(t)=\frac{F(t)}{m}
$$

And that by integrating both sides, thanks to the fundamental theorem of calculus 1 assuming the mass is constant over time, we obtain:

$$
x(t)=\frac{1}{m} \int F(t) d t
$$

Which is our case, for $F(t)=2 t^{2}$, develops in:

$$
\begin{aligned}
x(t) & =\frac{1}{m} \int 2 t^{2} d t \\
& =\frac{2}{3 m} t^{3}+c, c \in \mathbb{R}
\end{aligned}
$$

The initial condition $x(0)=\pi$ implies that $c=\pi$, hence the position at all time would be:

$$
x(t)=\frac{2}{3 m} t^{3}+\pi
$$

[^0]
[^0]: ${ }^{1}$ https://en.wikipedia.org/wiki/Fundamental_theorem_of_calculus

