The Theoretical Minimum Classical Mechanics - Solutions L03E02

 $Last \ version: \ tales.mbivert.com/on-the-theoretical-minimum-solutions/ \ or \ github.com/mbivert/ttm$

M. Bivert

May 10, 2023

Exercise 1. Integrate this equation. Hint: Use definite integrals.

The equation in question resulting from Newton's second law in the case of a constant force F_z being applied to an object of mass m following the z-axis:

$$\dot{v_z} = v_z(t) = \frac{F_z}{m}$$

By integrating both sides, thanks to the fundamental theorem of calculus, assuming the mass is constant over time, we obtain:

$$v_z(t) = \int \frac{F_z}{m} dt$$
$$= \frac{F_z}{m} \int dt$$
$$= \frac{F_z}{m} t + c, \ c \in \mathbb{R}$$

Generally, c would be determine from an initial condition $v_z(0)$, which is our case, would precisely be c, hence:

$$v_z(t) = v_z(0) + \frac{F_z}{m}t \qquad \Box$$

Which is exactly the solution proposed in the book.