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Exercise 1. Rework Exercise 2 for the potential V = Are there circular orbits? If so, do they

k
2(z2+y?) "
all have the same period? Is the total energy conserved?

Equations of motion
The approach is similar to what has been done for the previous exercise: for this system, the potential
energy V is:
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By Newton’s second law of motiorEl, given r = (z,y), we have:

(1)

F = ma =mv = m# (2)
Or,

F,= mi
o .. (3)
= my

We know by equation (5) of this lecture that to each coordinate z; of the configuration space {z}, there
is a force Fj, derived from the potential energy V:

Fi({a}) = 5V ({a}) (4)

As for the previous exercise, we make heavy use of the chain ruleﬂ for derivation:

2 Flol@) = ¢/ @) (g()) 5)

To compute e.g. F,(z,y), we define ¢(z) = 22 + y*:

Thus finally:

Ihttps://en.wikipedia.org/wiki/Newton%27s_laws_of_motion#Second
*https://en.wikipedia.org/wiki/Chain_rule
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Hence combining and :
(t)

Fo(z,y) =|mi(t) =k

Fy(z,y) = |mj(t) = M + 022

Circular orbits

Let’s make a guess, and see what would happen were we to plug the simplest circular motion, that we’ve
already studied in the book at the end of Chapter 2 (Motion), given by:

z(t) = Rcos(wt); y(t) = Rsin(wt)

Which is very convenient for us, because if we try this solution in 7 the (common) denominator
simplifies:

(2()? +y(1)%)* = ((Rcos(wt))? + (Rsin(wt))?)” = R* (cos*(wt) + sin(wt))? = R*

=1

Let’s now consider the velocities and accelerations we would obtain by differentiating our guess for x(t)
and y(t):

#(t) = —Rwsin(wt); y(t) Rw cos(wt)
i(t) = —Rw?cos(wt); §j(t) = —Rw?sin(wt)
There are two ways for this guess to actually work:
1. Either we set w? = —k/mR*, which implies either:

. (trivial solution then);

e or that mR to be close to infinite (unrealistic);

e or ‘ that & is (strictly) negative; ‘

e or that either m or R are negative (unrealistic);
e or, mathematically, that w is an imaginary (complex) number, which would be difficult to
interpret, physically;

2. The other option would be for R to be negative, which again doesn’t make a lot of sense, physically-
wise.

Remark 1. Note that our guess would have worked for a negated V :

k
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Remark 2. What is commonly referred to as "the trivial solution”; especially in the context of differential
equations, is the solution x(t) = 0, which is of little interest, mathematically and physically.

We can conclude that, at least physically speaking, ‘ there are no circular orbits, unless k is negative ‘

This is because, if there were circular orbits, then they would be a coordinate change away from being
in the form of our guess.

The only remaining issue is that k hasn’t been clearly defined, physically speaking, so we can’t really
know for sure if assuming k to be negative (with a reminder that & = 0 leads to the trivial solution).



Remark 3. Another approach, used for instance in the official solutionﬂ relies on the polar coordinate
(r,0): the existence of a circular orbit then translate to r being a constant, or equivalently, 7 = 0.

We’ll dive deeper into polar coordinates in a later exercise, alongside a bunch of other elements related
to circular motion (|LO6E05, which involves a pendulum).

Energy conservation
Earlier in the lecture, the kinetic energy has been defined to be the sum of all the kinetic energies for
each coordinate:

1 .
T = 5 zl: mi$1‘2 (9)

Which gives us for this system, expliciting the time-dependencies:

T(1) = gmit) + gmi(t)? = gm@(t) + (1)) (10)

From which we can compute the variation of kinetic energy over time, again using the chain rule:

d 1

—T(t) = —m2z(t)x(t 2y(t)y(t

ST = Sm(2E(0E() + 21 (1) )
= m(ii + jij)

On the other hand, we can compute the variation of potential energy over time from . We'll use the

chain rule again, with ¢(t) = x(¢)? + y(¢)? and thus:

¢'(t) = 2a'(t)z(t) + 2y (t)y(t)
= 2&x+ 2yy
It follows that:
d d k
~VI(t - - 0
dtv( ) dt 2(x(t)? + y(t)2)
k d 1
= §%¢(t)
k _
= —5d M)
ok 2iwt 2y (12)
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_ ety
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Then, from , we can extract
m.. m ..
ot) = TEMG yt) = o)’
Injecting in gives:
d k .m 2 .m .. 2
—V({t) = —— (i—id(t —ijo(t
~V () S (P EoW? +9700()) "
= —m(@Z+7j)
And so by combining and we can indeed see that the energy is conserved:
d d d
%E(t) = %T(t) + %V(t) =0 O

3http://wuw.madscitech.org/tm/slns/15e3.pdf
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