
The Theoretical Minimum

Classical Mechanics - Solutions

L05E03

Last version: tales.mbivert.com/on-the-theoretical-minimum-solutions/ or github.com/mbivert/ttm

M. Bivert

May 10, 2023

Exercise 1. Rework Exercise 2 for the potential V = k
2(x2+y2) . Are there circular orbits? If so, do they

all have the same period? Is the total energy conserved?

Equations of motion
The approach is similar to what has been done for the previous exercise: for this system, the potential
energy V is:

V =
k

2(x2 + y2)
(1)

By Newton’s second law of motion1, given r = (x, y), we have:

F = ma = mv̇ = mr̈ (2)

Or,

Fx = mẍ

Fy = mÿ
(3)

We know by equation (5) of this lecture that to each coordinate xi of the configuration space {x}, there
is a force Fi, derived from the potential energy V :

Fi({x}) = − ∂

∂xi
V ({x}) (4)

As for the previous exercise, we make heavy use of the chain rule2 for derivation:

d

dx
f(g(x)) = g′(x)f ′(g(x)) (5)

To compute e.g. Fx(x, y), we define ϕ(x) = x2 + y2:

Fx(x, y) = − ∂

∂x
V (x, y)

=
k

2

d

dx

1

ϕ(x)

=
k

2
ϕ′(x)

−1√
ϕ(x)

=
kx

(x2 + y2)2

(6)

Thus finally:

1https://en.wikipedia.org/wiki/Newton%27s_laws_of_motion#Second
2https://en.wikipedia.org/wiki/Chain_rule
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Fx(x, y) =
kx

(x2 + y2)2

Fy(x, y) =
ky

(x2 + y2)2

(7)

Hence combining (7) and (3):

Fx(x, y) = mẍ(t) = k
x(t)

(x(t)2 + y(t)2)2

Fy(x, y) = mÿ(t) = k
y(t)

(x(t)2 + y(t)2)2

(8)

Circular orbits

Let’s make a guess, and see what would happen were we to plug the simplest circular motion, that we’ve
already studied in the book at the end of Chapter 2 (Motion), given by:

x(t) = R cos(ωt); y(t) = R sin(ωt)

Which is very convenient for us, because if we try this solution in (8), the (common) denominator
simplifies: (

x(t)2 + y(t)2
)2

=
(
(R cos(ωt))2 + (R sin(ωt))2

)2
= R4 (cos2(ωt) + sin2(ωt))2︸ ︷︷ ︸

=1

= R4

Let’s now consider the velocities and accelerations we would obtain by differentiating our guess for x(t)
and y(t):

ẋ(t) = −Rω sin(ωt); ẏ(t) = Rω cos(ωt)

ẍ(t) = −Rω2 cos(ωt); ÿ(t) = −Rω2 sin(ωt)

There are two ways for this guess to actually work:

1. Either we set ω2 = −k/mR4, which implies either:

• k to be zero (trivial solution then);

• or that mR to be close to infinite (unrealistic);

• or that k is (strictly) negative;

• or that either m or R are negative (unrealistic);

• or, mathematically, that ω is an imaginary (complex) number, which would be difficult to
interpret, physically;

2. The other option would be for R to be negative, which again doesn’t make a lot of sense, physically-
wise.

Remark 1. Note that our guess would have worked for a negated V :

V = − k

2(x2 + y2)

Remark 2. What is commonly referred to as ”the trivial solution”, especially in the context of differential
equations, is the solution x(t) = 0, which is of little interest, mathematically and physically.

We can conclude that, at least physically speaking, there are no circular orbits, unless k is negative .

This is because, if there were circular orbits, then they would be a coordinate change away from being
in the form of our guess.

The only remaining issue is that k hasn’t been clearly defined, physically speaking, so we can’t really
know for sure if assuming k to be negative (with a reminder that k = 0 leads to the trivial solution).
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Remark 3. Another approach, used for instance in the official solutions3, relies on the polar coordinate
(r, θ): the existence of a circular orbit then translate to r being a constant, or equivalently, ṙ = 0.

We’ll dive deeper into polar coordinates in a later exercise, alongside a bunch of other elements related
to circular motion ( L06E05, which involves a pendulum).

Energy conservation
Earlier in the lecture, the kinetic energy has been defined to be the sum of all the kinetic energies for
each coordinate:

T =
1

2

∑
i

miẋi
2 (9)

Which gives us for this system, expliciting the time-dependencies:

T (t) =
1

2
mẋ(t)2 +

1

2
mẏ(t)2 =

1

2
m(ẋ(t)2 + ẏ(t)2) (10)

From which we can compute the variation of kinetic energy over time, again using the chain rule:

d

dt
T (t) =

1

2
m(2ẋ(t)ẍ(t) + 2ẏ(t)ÿ(t))

= m(ẋẍ+ ẏÿ)
(11)

On the other hand, we can compute the variation of potential energy over time from (1). We’ll use the
chain rule again, with ϕ(t) = x(t)2 + y(t)2 and thus:

ϕ′(t) = 2x′(t)x(t) + 2y′(t)y(t)

= 2ẋx+ 2ẏy

It follows that:

d

dt
V (t) =

d

dt

k

2(x(t)2 + y(t)2)

=
k

2

d

dt
ϕ(t)−1

= − k

2
ϕ′(t)ϕ(t)−2

= − k

2

2ẋx+ 2ẏy

(x(t)2 + y(t)2

= − k
ẋx+ ẏy

(x2 + y2)2

= − k
ẋx+ ẏy

ϕ(t)2

(12)

Then, from (8), we can extract

x(t) =
m

k
ẍϕ(t)2; y(t) =

m

k
ÿϕ(t)2

Injecting in (12) gives:
d

dt
V (t) = − k

ϕ(t)2

(
ẋ
m

k
ẍϕ(t)2 + ẏ

m

k
ÿϕ(t)2

)
= −m(ẋẍ+ ẏÿ)

(13)

And so by combining (13) and (11) we can indeed see that the energy is conserved:

d

dt
E(t) =

d

dt
T (t) +

d

dt
V (t) = 0

3http://www.madscitech.org/tm/slns/l5e3.pdf
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