The Theoretical Minimum

Classical Mechanics - Solutions
L05E03
Last version: tales.mbivert.com/on-the-theoretical-minimum-solutions/ or github.com/mbivert/ttm
M. Bivert

May 10, 2023

Exercise 1. Rework Exercise 2 for the potential $V=\frac{k}{2\left(x^{2}+y^{2}\right)}$. Are there circular orbits? If so, do they all have the same period? Is the total energy conserved?

Equations of motion

The approach is similar to what has been done for the previous exercise: for this system, the potential energy V is:

$$
\begin{equation*}
V=\frac{k}{2\left(x^{2}+y^{2}\right)} \tag{1}
\end{equation*}
$$

By Newton's second law of motion ${ }^{1}$, given $\boldsymbol{r}=(x, y)$, we have:

$$
\begin{equation*}
\boldsymbol{F}=m \boldsymbol{a}=m \dot{\boldsymbol{v}}=m \ddot{\boldsymbol{r}} \tag{2}
\end{equation*}
$$

Or,

$$
\begin{align*}
& F_{x}=m \ddot{x} \tag{3}\\
& F_{y}=m \ddot{y}
\end{align*}
$$

We know by equation (5) of this lecture that to each coordinate x_{i} of the configuration space $\{x\}$, there is a force F_{i}, derived from the potential energy V :

$$
\begin{equation*}
F_{i}(\{x\})=-\frac{\partial}{\partial x_{i}} V(\{x\}) \tag{4}
\end{equation*}
$$

As for the previous exercise, we make heavy use of the chain rul ${ }^{2}$ for derivation:

$$
\begin{equation*}
\frac{d}{d x} f(g(x))=g^{\prime}(x) f^{\prime}(g(x)) \tag{5}
\end{equation*}
$$

To compute e.g. $F_{x}(x, y)$, we define $\phi(x)=x^{2}+y^{2}$:

$$
\begin{align*}
F_{x}(x, y) & =-\frac{\partial}{\partial x} V(x, y) \\
& =\frac{k}{2} \frac{d}{d x} \frac{1}{\phi(x)} \\
& =\frac{k}{2} \phi^{\prime}(x) \frac{-1}{\sqrt{\phi(x)}} \tag{6}\\
& =\frac{k x}{\left(x^{2}+y^{2}\right)^{2}}
\end{align*}
$$

Thus finally:

[^0]\[

$$
\begin{align*}
& F_{x}(x, y)=\frac{k x}{\left(x^{2}+y^{2}\right)^{2}} \\
& F_{y}(x, y)=\frac{k y}{\left(x^{2}+y^{2}\right)^{2}} \tag{7}
\end{align*}
$$
\]

Hence combining (7) and (3):

$$
\begin{align*}
& F_{x}(x, y)=m \ddot{x}(t)=k \frac{x(t)}{\left(x(t)^{2}+y(t)^{2}\right)^{2}} \\
& F_{y}(x, y)=m \ddot{y}(t)=k \frac{y(t)}{\left(x(t)^{2}+y(t)^{2}\right)^{2}} \tag{8}
\end{align*}
$$

Circular orbits

Let's make a guess, and see what would happen were we to plug the simplest circular motion, that we've already studied in the book at the end of Chapter 2 (Motion), given by:

$$
x(t)=R \cos (\omega t) ; \quad y(t)=R \sin (\omega t)
$$

Which is very convenient for us, because if we try this solution in 88, the (common) denominator simplifies:

$$
\left(x(t)^{2}+y(t)^{2}\right)^{2}=\left((R \cos (\omega t))^{2}+(R \sin (\omega t))^{2}\right)^{2}=R^{4} \underbrace{\left(\cos ^{2}(\omega t)+\sin ^{2}(\omega t)\right)^{2}}_{=1}=R^{4}
$$

Let's now consider the velocities and accelerations we would obtain by differentiating our guess for $x(t)$ and $y(t)$:

$$
\begin{array}{rlr}
\dot{x}(t)= & -R \omega \sin (\omega t) ; & \dot{y}(t)= \\
\ddot{x}(t)= & -R \omega^{2} \cos (\omega t) ; & \ddot{y}(t)= \\
& -R \omega^{2} \sin (\omega t) \\
\end{array}
$$

There are two ways for this guess to actually work:

1. Either we set $\omega^{2}=-k / m R^{4}$, which implies either:

- k to be zero (trivial solution then);
- or that $m R$ to be close to infinite (unrealistic);
- or that k is (strictly) negative;
- or that either m or R are negative (unrealistic);
- or, mathematically, that ω is an imaginary (complex) number, which would be difficult to interpret, physically;

2. The other option would be for R to be negative, which again doesn't make a lot of sense, physicallywise.

Remark 1. Note that our guess would have worked for a negated V :

$$
V=-\frac{k}{2\left(x^{2}+y^{2}\right)}
$$

Remark 2. What is commonly referred to as "the trivial solution", especially in the context of differential equations, is the solution $x(t)=0$, which is of little interest, mathematically and physically.

We can conclude that, at least physically speaking, there are no circular orbits, unless k is negative. This is because, if there were circular orbits, then they would be a coordinate change away from being in the form of our guess.

The only remaining issue is that k hasn't been clearly defined, physically speaking, so we can't really know for sure if assuming k to be negative (with a reminder that $k=0$ leads to the trivial solution).

Remark 3. Another approach, used for instance in the official solution 4^{3}, relies on the polar coordinate (r, θ) : the existence of a circular orbit then translate to r being a constant, or equivalently, $\dot{r}=0$.

We'll dive deeper into polar coordinates in a later exercise, alongside a bunch of other elements related to circular motion (L06E05, which involves a pendulum).

Energy conservation

Earlier in the lecture, the kinetic energy has been defined to be the sum of all the kinetic energies for each coordinate:

$$
\begin{equation*}
T=\frac{1}{2} \sum_{i} m_{i}{\dot{x_{i}}}^{2} \tag{9}
\end{equation*}
$$

Which gives us for this system, expliciting the time-dependencies:

$$
\begin{equation*}
T(t)=\frac{1}{2} m \dot{x}(t)^{2}+\frac{1}{2} m \dot{y}(t)^{2}=\frac{1}{2} m\left(\dot{x}(t)^{2}+\dot{y}(t)^{2}\right) \tag{10}
\end{equation*}
$$

From which we can compute the variation of kinetic energy over time, again using the chain rule:

$$
\begin{align*}
\frac{d}{d t} T(t) & =\frac{1}{2} m(2 \dot{x}(t) \ddot{x}(t)+2 \dot{y}(t) \ddot{y}(t)) \tag{11}\\
& =m(\dot{x} \ddot{x}+\dot{y} \ddot{y})
\end{align*}
$$

On the other hand, we can compute the variation of potential energy over time from (1). We'll use the chain rule again, with $\phi(t)=x(t)^{2}+y(t)^{2}$ and thus:

$$
\begin{aligned}
\phi^{\prime}(t) & =2 x^{\prime}(t) x(t)+2 y^{\prime}(t) y(t) \\
& =2 \dot{x} x+2 \dot{y} y
\end{aligned}
$$

It follows that:

$$
\begin{align*}
\frac{d}{d t} V(t) & =\frac{d}{d t} \frac{k}{2\left(x(t)^{2}+y(t)^{2}\right)} \\
& =\frac{k}{2} \frac{d}{d t} \phi(t)^{-1} \\
& =-\frac{k}{2} \phi^{\prime}(t) \phi(t)^{-2} \\
& =-\frac{k}{2} \frac{2 \dot{x} x+2 \dot{y} y}{\left(x(t)^{2}+y(t)^{2}\right.} \tag{12}\\
& =-k \frac{\dot{x} x+\dot{y} y}{\left(x^{2}+y^{2}\right)^{2}} \\
& =-k \frac{\dot{x} x+\dot{y} y}{\phi(t)^{2}}
\end{align*}
$$

Then, from (8), we can extract

$$
x(t)=\frac{m}{k} \ddot{x} \phi(t)^{2} ; \quad y(t)=\frac{m}{k} \ddot{y} \phi(t)^{2}
$$

Injecting in (12) gives:

$$
\begin{align*}
\frac{d}{d t} V(t) & =-\frac{k}{\phi(t)^{2}}\left(\dot{x} \frac{m}{k} \ddot{x} \phi(t)^{2}+\dot{y} \frac{m}{k} \ddot{y} \phi(t)^{2}\right) \tag{13}\\
& =-m(\dot{x} \ddot{x}+\dot{y} \ddot{y})
\end{align*}
$$

And so by combining (13) and we can indeed see that the energy is conserved:

$$
\frac{d}{d t} E(t)=\frac{d}{d t} T(t)+\frac{d}{d t} V(t)=0
$$

[^1]
[^0]: 1 https://en.wikipedia.org/wiki/Newton\%27s_laws_of_motion\#Second
 2 https://en.wikipedia.org/wiki/Chain_rule

[^1]: $\sqrt[3]{\text { http://www.madscitech.org/tm/slns/l5e3.pdf }}$

