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Exercise 1. Show that Eq. (6) is just another form of Newton’s equation of motion Fi = miẍi.

Where Eq. (6) are the following set of equation, defined for all i ∈ J1, nK:
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Remark 1. This exercise is simply a generalization of the previous exercise (L06E01) to a configuration
space of size n ∈ N.

Then again, let us recall the Lagrangian defined slightly earlier in the related section of the book:
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Hence, (∀i ∈ J1, nK):
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2 ∂

∂xi
L = − ∂

∂xi
V ({x})

=

n∑
j=1

mj ẋjδij

= miẋi (3)

Again, we need the potential energy principle, stated as Eq. (5) of the previous chapter Lecture 5:
Energy, for abstract configuration space {x} = {xi}, as:

Fi({x}) = − ∂

∂xi
V ({x}) (4)

From which we can conclude, by injecting (4) in the second half of (3), and connecting each side with
Euler-Lagrange’s equations (1), (∀i ∈ J1, nK):
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miẋi = Fi({x})

⇔ Fi = miẍi
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