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Exercise 1. Show that Eq. (6) is just another form of Newton’s equation of motion F; = m;&;.

Where Eq. (6) are the following set of equation, defined for all i € [1,n]:
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Remark 1. This exercise is simply a generalization of the previous exercise (LO6E01) to a configuration
space of size n € N.

Then again, let us recall the Lagrangian defined slightly earlier in the related section of the book:

L= E (3mie?) - Vet o)

Hence, (Vi € [1,n]):
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Again, we need the potential energy principle, stated as Eq. (5) of the previous chapter Lecture 5:
Energy, for abstract configuration space {z} = {z;}, as:

Fi({e}) = = -V ({a) @

From which we can conclude, by injecting in the second half of , and connecting each side with
Euler-Lagrange’s equations (I), (Vi € [1,n]):
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