The Theoretical Minimum

Classical Mechanics - Solutions
L06E03

Last version: tales.mbivert.com/on-the-theoretical-minimum-solutions/or github.com/mbivert/ttm
M. Bivert

May 10, 2023

Exercise 1. Use the Euler-Lagrange equations to derive the equations of motions from the Lagrangian in Eq. (12).

Again, let us recall the general form of Euler-Lagrange equations for a configuration space of size $n \in \mathbb{N}$: $(\forall i \in \llbracket 1, n \rrbracket)$,

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{\partial}{\partial \dot{x}_{i}} L\right)=\frac{\partial}{\partial x_{i}} L \tag{1}
\end{equation*}
$$

In the case of this exercise, the Lagrangian L is defined in Eq. (12) as:

$$
L=\frac{m}{2}\left(\dot{X}^{2}+\dot{Y}^{2}\right)+\frac{m \omega^{2}}{2}\left(X^{2}+Y^{2}\right)+m \omega(\dot{X} Y-\dot{Y} X)
$$

Let's compute the partial derivatives of L on \dot{X}, X, \dot{Y} and Y :

$$
\begin{align*}
\frac{\partial}{\partial \dot{X}} L & =\frac{\partial}{\partial \dot{X}}\left(\frac{m}{2} \dot{X}^{2}+m \omega \dot{X} Y\right) & \frac{\partial}{\partial X} L & =\frac{\partial}{\partial X}\left(\frac{m \omega^{2}}{2} X^{2}-m \omega \dot{Y} X\right) \\
& =m \dot{X}+m \omega Y & & m \omega^{2} X-m \omega \dot{Y} \\
\frac{\partial}{\partial \dot{Y}} L & =\frac{\partial}{\partial \dot{Y}}\left(\frac{m}{2} \dot{Y}^{2}-m \omega \dot{Y} X\right) & \frac{\partial}{\partial Y} L & =\frac{\partial}{\partial Y}\left(\frac{m \omega^{2}}{2} Y^{2}+m \omega \dot{X} Y\right) \\
& =m \dot{Y}-m \omega X & & m \omega^{2} Y+m \omega \dot{X}
\end{align*}
$$

Finally, by plugging (2) into (1), we obtain:

$$
\begin{array}{ll}
& \frac{d}{d t}(m \dot{X}+m \omega Y)=m \omega^{2} X-m \omega \dot{Y} \\
\Leftrightarrow & \frac{d}{d t}(m \dot{Y}-m \omega X)=m \omega^{2} Y+m \omega \dot{X} \\
& \Leftrightarrow \omega^{2} X-2 m \omega \dot{Y}
\end{array} \quad \Leftrightarrow m \ddot{Y}=m \omega^{2} Y+2 m \omega \dot{X} \quad \square \quad, ~
$$

Remark 1. Those results indeed matches the equations proposed in the book just slightly before this exercise.

