
The Theoretical Minimum

Classical Mechanics - Solutions

L06E04

Last version: tales.mbivert.com/on-the-theoretical-minimum-solutions/ or github.com/mbivert/ttm

M. Bivert

May 10, 2023

Exercise 1. Work out George’s Lagrangian and Euler-Lagrange equations in polar coordinates.

As always, let us recall the general form of Euler-Lagrange equations for a configuration space of size
n ∈ N: (∀i ∈ J1, nK),

d

dt

(
∂

∂ẋi
L

)
=

∂

∂xi
L (1)

The original Lagrangian L in our case is defined by the Eq. (10) of this chapter as:

L =
m

2

(
ẋ2 + ẏ2

)
(2)

After the following coordinate shift (Eq. (9) of the book):

x = X cos(ωt) + Y sin(ωt) y = −X sin(ωt) + Y cos(ωt) (3)

We obtained this Lagrangian (Eq. (12) of the book):

L =
m

2
(Ẋ2 + Ẏ 2) +

mω2

2
(X2 + Y 2) +mω(ẊY − Ẏ X) (4)

For the current exercise, the coordinate shift to polar equations is:

X = R cos θ Y = R sin θ (5)

Where, implicitly, both R and θ are, as X and Y , functions of time.

Now, we have at least two ways of solving this exercise:

1. Either perform the coordinate shit (5) in (4): this will be a tedious but very similar development
as the one performed in the book to obtain (4) from (2) and (3);

2. or perform this new coordinate shift (5) directly in the first coordinate shift (3), and work from the
first Lagrangian (2) instead: some trigonometric identities are likely to ease at least the beginning
of the work here.

We will try both approaches, and expect to find the exact same solutions in the end.

First approach
Let use start by computing the time derivative of X and Y as defined by (5), using the both the product
1 and the chain rule 2:

Ẋ = Ṙ cos θ −Rθ̇ sin θ Ẏ = Ṙ sin θ +Rθ̇ cos θ (6)

1https://en.wikipedia.org/wiki/Product_rule
2https://en.wikipedia.org/wiki/Chain_rule
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Remark 1. For clarity, as a similar development will happen a few times, let’s go into details for the
first one: the product rule for two functions u and v of a single variable, of respective derivatives u′ and
v′ is

(uv)′ = u′v + uv′

Now the chain rule is, again for the same kind of functions:

(u(v(x))′ = v′(x)u′(v(x))

In the present case, we have a X(t) defined as the product of two functions: X(t) = R(t) cos(ω(t)), where
the second one is itself a composition of two functions cos(ω(t)). Hence, by applying first the product
rule, we obtain:

X ′(t) = R′(t) cos(ω(t)) +R(t) (cos(ω(t)))
′

While the chain rule gives us:
(cos(ω(t)))′ = −ω′(t) sin(ω(t))

Hence,
X ′(t) = R′(t) cos(ω(t))−R(t)ω′(t) sin(ω(t))

Now, our goal will be to plug (5) and (6) into the Lagrangian (4) obtained after the first coordinate
shift, but doing that transformation at once will gives a difficult to read equation. Instead, we’ll work in
smaller steps, simplifying our results using trigonometric identities along the way.

Let us start with X2 + Y 2, using the fact that sin2 θ + cos2 θ = 1:

X2 + Y 2 = R2 cos2 θ +R2 sin2 θ

= R2(cos2 θ + sin2 θ)

= R2 (7)

Now for Ẋ2 + Ẏ 2, using the same trigonometric identity:

Ẋ2 = (Ṙ cos θ −Rθ̇ sin θ)2 Ẏ 2 = (Ṙ sin θ +Rθ̇ cos θ)2

= Ṙ2 cos2 θ − 2RṘθ̇ cos θ sin θ +R2θ̇2 sin2 θ = Ṙ2 sin2 θ + 2RṘθ̇ sin θ cos θ +R2θ̇2 cos2 θ

Ẋ2 + Ẏ 2 = Ṙ2(cos2 θ + sin2 θ) +R2θ̇2(cos2 θ + sin2 θ)

= Ṙ2 +R2θ̇2 (8)

Finally, for ẊY − Ẏ X:

ẊY = (Ṙ cos θ −Rθ̇ sin θ)R sin θ Ẏ X = (Ṙ sin θ +Rθ̇ cos θ)R cos θ

= RṘ cos θ sin θ −R2θ̇ sin2 θ = RṘ cos θ sin θ +R2θ̇ cos2 θ

ẊY − Ẏ X = −R2θ̇(sin2 θ + cos2 θ)

= −R2θ̇ (9)

Now we’re ready to plug (7), (8) and (9) into (4):

L =
m

2
(Ṙ2 +R2θ̇2) +

mω2

2
R2 −mωR2θ̇ (10)

Now, let’s compute the partial derivatives of our new Lagrangian:

∂

∂Ṙ
L =

∂

∂Ṙ

(m
2
Ṙ2

) ∂

∂R
L =

∂

∂R

(
m

2
R2θ̇2 +

mω2

2
R2 −mωR2θ̇

)
= mṘ = (θ̇2 + ω2 − 2ωθ̇)mR

= (θ̇ − ω)2mR

∂

∂θ̇
L =

∂

∂θ̇

(m
2
R2θ̇2 −mωR2θ̇

) ∂

∂θ
L = 0

= mR2(θ̇ − ω) (11)
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And from there, plug (11) in Euler-Lagrange (1) to derive the equations of motion (again for the second
one, we use a combination of the product and chain rules for derivatives):

d

dt

(
mṘ

)
= (θ̇ − ω)2mR

d

dt

(
mR2(θ̇ − ω)

)
= 0

⇔ R̈ = (θ̇ − ω)2R ⇔m
(
(θ̇ − ω)2ṘR+R2θ̈

)
= 0

⇔ Rθ̈ = (ω − θ̇)2Ṙ

Second approach
We’ll now try to see if we can get a cleaner derivation, hopefully with the same results, by combining
the two coordinate shifts (3) and (5) first, and then rely on the original Lagrangian (2).

The combined coordinate shift is:

x = R cos θ cos(ωt) +R sin θ sin(ωt)

y = −R cos θ sin(ωt) +R sin θ cos(ωt)

We have the four following trigonometric identities3:

cosθ cosφ =
cos(θ − φ) + cos(θ + φ)

2
sinθ sinφ =

cos(θ − φ)− cos(θ + φ)

2

cosθ sinφ =
sin(θ + φ)− sin(θ − φ)

2
sinθ cosφ =

sin(θ + φ) + sin(θ − φ)

2

Hence the coordinate shift can be rewritten:

x = R cos(θ − ωt)

y = R sin(θ − ωt) (12)

To inject it in the original Lagrangian (2), we need to compute ẋ2+ ẏ2. For the derivation, as previously,
we’ll rely on a combination of the product/chain rule; we’ll note φ = θ − ωt:

ẋ = Ṙ cosφ−R(θ̇ − ω) sinφ

ẏ = Ṙ sinφ+R(θ̇ − ω) cosφ

ẋ2 = Ṙ2 cos2 φ− 2RṘ(θ̇ − ω) cosφ sinφ+R2(θ̇ − ω)2 sin2 φ

ẏ2 = Ṙ2 sin2 φ+ 2RṘ(θ̇ − ω) cosφ sinφ+R2(θ̇ − ω)2 cos2 φ

Hence the Lagrangian becomes, again using the Pythagorean trigonometric identity cos2 θ + sin2 θ = 1:

L =
m

2

(
ẋ2 + ẏ2

)
=

m

2

(
Ṙ2 +R2(θ̇ − ω)2

)
=

m

2

(
Ṙ2 +R2(θ̇2 − 2θ̇ω + ω2)

)
=

m

2
(Ṙ2 +R2θ̇2) +

m

2
R2ω2 −mωR2θ̇

Which is the same Lagrangian we had before in (10), from which we would obviously derive the exact
same equation of motion. .

Remark 2. As expected, the derivation is overall less tedious, but only because the complexity is now
hidden behind the trigonometric identities.

3https://en.wikipedia.org/wiki/List_of_trigonometric_identities#Product-to-sum_and_sum-to-product_

identities
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Remark 3. A little later in the book, a solution to this exercise is proposed: it starts with this Lagrangian:

L =
m

2

(
ṙ2 + r2θ̇2

)
Which is exactly our Lagrangian, however assuming for some reason that ω = 0. From which follows the
same equation of motions, again with the same assumption regarding ω:

r̈ = rθ̇2

d

dt

(
mr2θ̇

)
= 0

Let’s remind ourselves that ω represents the rotation of the polar coordinate system of the present exercise,
a rotation which won’t exist for a general polar coordinate system, hence the reason we have ω = 0 in
the general case.
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