The Theoretical Minimum

Classical Mechanics - Solutions
L06E06
Last version: tales.mbivert.com/on-the-theoretical-minimum-solutions/ or github.com/mbivert/ttm
M. Bivert

May 10, 2023

Exercise 1. Explain how we derived this.
Let us recall that "this" refers to the following expression for the kinetic energy:

$$
T=m\left(\dot{x_{+}}{ }^{2}+{\dot{x_{-}}}^{2}\right)
$$

Starting from the following Lagrangian, involving two particles moving on a line with respective position and velocity $x_{i}, \dot{x_{i}}$:

$$
\begin{equation*}
L=\frac{m}{2}\left({\dot{x_{1}}}^{2}+{\dot{x_{2}}}^{2}\right)-V\left(x_{1}-x_{2}\right) \tag{1}
\end{equation*}
$$

After having performed the following change of coordinates:

$$
\begin{equation*}
x_{+}=\frac{x_{1}+x_{2}}{2} \quad x_{-}=\frac{x_{1}-x_{2}}{2} \tag{2}
\end{equation*}
$$

From the Lagrangian, (1) we have the kinetic energy:

$$
\begin{equation*}
T=\frac{m}{2}\left({\dot{x_{1}}}^{2}+{\dot{x_{2}}}^{2}\right) \tag{3}
\end{equation*}
$$

By first both summing and subtracting the two equations of (2), and then by linearity of the derivation, we get:

$$
\begin{array}{ll}
x_{+}+x_{-}=x_{1} & x_{+}-x_{-}=x_{2} \\
\dot{x_{+}}+\dot{x_{-}}=\dot{x_{1}} & \dot{x_{+}}-\dot{x_{-}}=\dot{x_{2}}
\end{array}
$$

It's now simply a matter of injecting (4) into (3):

$$
\begin{aligned}
& T=\frac{m}{2}\left(\dot{x_{1}}\right. \\
& \\
&=\frac{m}{2}\left(\left(\dot{x_{+}}\right.\right. \\
& \\
&\left.\dot{x_{+}}\right) \\
&\left.=\frac{m}{2}\left(2 \dot{x+}^{2}+2 \dot{x_{+}}-\dot{x_{-}}\right)^{2}+2 \dot{x_{+}} \dot{x_{-}}-2 \dot{x_{+}} \dot{\dot{x_{-}}}\right) \\
&=m\left(\dot{x_{+}}{ }^{2}+{\dot{x_{-}}}^{2}\right) \square
\end{aligned}
$$

