The Theoretical Minimum

Classical Mechanics - Solutions

L07E01
Last version: tales.mbivert.com/on-the-theoretical-minimum-solutions/or github.com/mbivert/ttm
M. Bivert

May 10, 2023

Exercise 1. Derive Equations (2) and explain the sign difference.
Let us recall Equations (2):

$$
\dot{p_{1}}=-V^{\prime}\left(q_{1}-q_{2}\right) \quad \dot{p_{2}}=+V^{\prime}\left(q_{1}-q_{2}\right)
$$

We have to derive them from the Lagrangian given in Equation (1), which represents a system of two generalized coordinates q_{1} and q_{2} :

$$
\begin{equation*}
L=\frac{1}{2}\left({\dot{q_{1}}}^{2}+{\dot{q_{2}}}^{2}\right)-V\left(q_{1}-q_{2}\right) \tag{1}
\end{equation*}
$$

To retrieve the equations of motions from a Lagrangian, we need to use Euler-Lagrange's equations, for instance recalled as Equation (13) of the previous chapter ("Lecture 6: The Principle of Least Action"):

$$
\frac{d}{d t}\left(\frac{\partial}{\partial \dot{q}_{i}} L\right)=\frac{\partial}{\partial q_{i}} L
$$

Let us also recall, again from previous chapter, right after Equation (13), that the conjugate momentum is defined by

$$
p_{i}=\frac{\partial}{\partial \dot{q}_{1}} L
$$

For our Lagrangian (1), we have for the first half of Euler-Lagrange equations:

$$
\begin{align*}
p_{1} & \equiv \frac{\partial}{\partial \dot{q}_{1}} L=\dot{q}_{1} & p_{2} & \equiv \frac{\partial}{\partial \dot{q}_{2}} L=\dot{q}_{2} \tag{2}\\
\frac{d}{d t} p_{1} & =\dot{p}_{1}=\ddot{q}_{1} & \frac{d}{d t} p_{2} & =\dot{p_{2}}=\ddot{q}_{2}
\end{align*}
$$

Using the chain rul \rrbracket^{1} for the other half, with $\varphi\left(q_{i}\right)=q_{1}-q_{2}$, we get:

$$
\begin{align*}
\frac{\partial}{\partial q_{1}} L & =-\frac{\partial}{\partial q_{1}} V\left(\varphi\left(q_{1}\right)\right) & \frac{\partial}{\partial q_{2}} L & =-\frac{\partial}{\partial q_{2}} V\left(\varphi\left(q_{2}\right)\right) \\
& =-\frac{\partial}{\partial q_{1}} \varphi\left(q_{1}\right) \frac{\partial}{\partial q_{1}} V\left(\varphi\left(q_{1}\right)\right) & & =-\frac{\partial}{\partial q_{2}} \varphi\left(q_{2}\right) \frac{\partial}{\partial q_{2}} V\left(\varphi\left(q_{2}\right)\right) \\
& =-\left(\frac{\partial}{\partial q_{1}} V\right)\left(q_{1}-q_{2}\right) & & =+\left(\frac{\partial}{\partial q_{2}} V\right)\left(q_{1}-q_{2}\right) \tag{4}
\end{align*}
$$

By noting $V^{\prime}=\frac{\partial}{\partial q_{i}} V$, and combining equations (2), (3) and (4), we indeed obtain the expected equations of motion

[^0]Remark 1. That is, assuming, $\frac{\partial}{\partial q_{1}} V\left(q_{1}\right)=\frac{\partial}{\partial q_{2}} V\left(q_{2}\right)$: for all the energy potential presented earlier in the book, there's indeed such a symmetry, e.g.

$$
\begin{aligned}
V & =\frac{1}{2} k\left(x^{2}+y^{2}\right), & p 103 \\
V & =\frac{1}{2} \frac{k}{x^{2}+y^{2}}, & p 103 \\
V & =-m \omega^{2}\left(X^{2}+Y^{2}\right), & p 120
\end{aligned}
$$

A similar tacit assumption seems to exists in Herbert Goldstein's Classical Mechanic ${ }^{2}{ }^{2}$.
Mathematically, the sign difference comes from the fact that the potential depends on one side from q_{1} and on the other from $-q_{2}$, which will persist when differentiating the potential V. Physically, it reflects that there's an order relation between the two "positions" q_{1} and q_{2} : one will come before the other, and our potential V depends on this ordering.

[^1]
[^0]: ${ }^{1}$ https://en.wikipedia.org/wiki/Chain_rule

[^1]: ${ }^{2}$ https://physics.stackexchange.com/a/107141

