The Theoretical Minimum **Classical Mechanics - Solutions** L07E01

Last version: tales.mbivert.com/on-the-theoretical-minimum-solutions/ or github.com/mbivert/ttm

M. Bivert

May 10, 2023

Exercise 1. Derive Equations (2) and explain the sign difference.

Let us recall Equations (2):

$$\dot{p_1} = -V'(q_1 - q_2)$$
 $\dot{p_2} = +V'(q_1 - q_2)$

We have to derive them from the Lagrangian given in Equation (1), which represents a system of two generalized coordinates q_1 and q_2 :

$$L = \frac{1}{2}(\dot{q_1}^2 + \dot{q_2}^2) - V(q_1 - q_2) \tag{1}$$

To retrieve the equations of motions from a Lagrangian, we need to use Euler-Lagrange's equations, for instance recalled as Equation (13) of the previous chapter ("Lecture 6: The Principle of Least Action"):

$$\frac{d}{dt} \left(\frac{\partial}{\partial \dot{q_i}} L \right) = \frac{\partial}{\partial q_i} L$$

Let us also recall, again from previous chapter, right after Equation (13), that the conjugate momentum is defined by

$$p_i = \frac{\partial}{\partial \dot{q_1}} I$$

For our Lagrangian (1), we have for the first half of Euler-Lagrange equations:

$$p_{1} \equiv \frac{\partial}{\partial \dot{q}_{1}} L = \dot{q}_{1} \qquad \qquad p_{2} \equiv \frac{\partial}{\partial \dot{q}_{2}} L = \dot{q}_{2} \qquad (2)$$
$$\frac{d}{dt} p_{1} = \dot{p}_{1} = \ddot{q}_{1} \qquad \qquad \frac{d}{dt} p_{2} = \dot{p}_{2} = \ddot{q}_{2} \qquad (3)$$

$$a_1 = \dot{p_1} = \ddot{q_1}$$
 $\frac{d}{dt}p_2 = \dot{p_2} = \ddot{q_2}$ (3)

Using the chain rule¹ for the other half, with $\varphi(q_i) = q_1 - q_2$, we get:

$$\frac{\partial}{\partial q_1} L = -\frac{\partial}{\partial q_1} V(\varphi(q_1)) \qquad \qquad \frac{\partial}{\partial q_2} L = -\frac{\partial}{\partial q_2} V(\varphi(q_2)) \\
= -\frac{\partial}{\partial q_1} \varphi(q_1) \frac{\partial}{\partial q_1} V(\varphi(q_1)) \qquad \qquad = -\frac{\partial}{\partial q_2} \varphi(q_2) \frac{\partial}{\partial q_2} V(\varphi(q_2)) \\
= -(\frac{\partial}{\partial q_1} V)(q_1 - q_2) \qquad \qquad = +(\frac{\partial}{\partial q_2} V)(q_1 - q_2) \qquad (4)$$

By noting $V' = \frac{\partial}{\partial q_i} V$, and combining equations (2), (3) and (4), we indeed obtain the expected equations of motion \Box .

¹https://en.wikipedia.org/wiki/Chain_rule

Remark 1. That is, assuming, $\frac{\partial}{\partial q_1}V(q_1) = \frac{\partial}{\partial q_2}V(q_2)$: for all the energy potential presented earlier in the book, there's indeed such a symmetry, e.g.

$$V = \frac{1}{2}k(x^2 + y^2), \qquad p103$$

$$V = \frac{1}{2} \frac{k}{x^2 + y^2},$$
 p103

$$V = -m\omega^2 (X^2 + Y^2), p120$$

A similar tacit assumption seems to exists in Herbert Goldstein's Classical Mechanics².

Mathematically, the sign difference comes from the fact that the potential depends on one side from q_1 and on the other from $-q_2$, which will persist when differentiating the potential V. Physically, it reflects that there's an order relation between the two "positions" q_1 and q_2 : one will come before the other, and our potential V depends on this ordering.

²https://physics.stackexchange.com/a/107141