# The Theoretical Minimum 

Classical Mechanics - Solutions
L07E02
Last version: tales.mbivert.com/on-the-theoretical-minimum-solutions/ or github.com/mbivert/ttm
M. Bivert

May 10, 2023

Exercise 1. Explain this conservation.
Let us recall that the referred conserved quantity is:

$$
b p_{1}+a p_{2}
$$

In the context of the following Lagrangian:

$$
\begin{equation*}
L=\frac{1}{2}\left(\dot{q}_{1}^{2}+{\dot{q_{2}}}^{2}\right)-V\left(a q_{1}-b q_{2}\right) \tag{1}
\end{equation*}
$$

Because the question is a unclear, we'll make the conservation explicit mathematically, and we'll try to understand the physical meaning of such a quantity being conserved.

As for the previous exercise, we can start by recalling Euler-Lagrange's equations, for instance taken from Equation (13) of the previous chapter ("Lecture 6: The Principle of Least Action"):

$$
\frac{d}{d t}\left(\frac{\partial}{\partial \dot{q}_{i}} L\right)=\frac{\partial}{\partial q_{i}} L
$$

Which was in the book followed by the definition of the conjugate momentum $p_{i}$ :

$$
p_{i}=\frac{\partial}{\partial \dot{q}_{1}} L
$$

For our Lagrangian (1), we have for the first half of Euler-Lagrange equations:

$$
\begin{align*}
p_{1} & \equiv \frac{\partial}{\partial \dot{q}_{1}} L=\dot{q}_{1} & p_{2} & \equiv \frac{\partial}{\partial \dot{q}_{2}} L=\dot{q}_{2}  \tag{2}\\
\frac{d}{d t} p_{1} & =\dot{p}_{1}=\ddot{q}_{1} & \frac{d}{d t} p_{2} & =\dot{p_{2}}=\ddot{q}_{2}
\end{align*}
$$

Using the chain rul ${ }^{1}$ for the other half, with $\varphi\left(q_{i}\right)=a q_{1}-b q_{2}$, we get:

$$
\begin{align*}
\frac{\partial}{\partial q_{1}} L & =-\frac{\partial}{\partial q_{1}} V\left(\varphi\left(q_{1}\right)\right) & \frac{\partial}{\partial q_{2}} L & =-\frac{\partial}{\partial q_{2}} V\left(\varphi\left(q_{2}\right)\right) \\
& =-\frac{\partial}{\partial q_{1}} \varphi\left(q_{1}\right) \frac{\partial}{\partial q_{1}} V\left(\varphi\left(q_{1}\right)\right) & & =-\frac{\partial}{\partial q_{2}} \varphi\left(q_{2}\right) \frac{\partial}{\partial q_{2}} V\left(\varphi\left(q_{2}\right)\right) \\
& =-\left(a \frac{\partial}{\partial q_{1}} V\right)\left(a q_{1}-b q_{2}\right) & & =+\left(b \frac{\partial}{\partial q_{2}} V\right)\left(a q_{1}-b q_{2}\right)
\end{align*}
$$

[^0]As for the previous exercise, it seems that there a tacit assumption of a symmetry within the potential $V$ so that we can write $V^{\prime}=\frac{\partial}{\partial q_{i}} V$; then, combining (2), (3) and (4):

$$
\dot{p_{1}}=-a V^{\prime}\left(a q_{1}-b q_{2}\right) \quad \dot{p_{2}}=+b V^{\prime}\left(a q_{1}-b q_{2}\right)
$$

As suggested, let's multiply the first equation by $b$, the second by $a$, and sum the result:

$$
b \dot{p_{1}}+a \dot{p_{2}}=-b a V^{\prime}\left(a q_{1}-b q_{2}\right)+a b V^{\prime}\left(a q_{1}-b q_{2}\right)=0
$$

By linearity of the derivation, this is equivalent to say that:

$$
\frac{d}{d t}\left(b p_{1}(t)+a p_{2}(t)\right)=0
$$

Which indeed means that $b p_{1}(t)+a p_{2}(t) \in \mathbb{R}$ is a indeed a constant over time, i.e. that it is conserved (over time).

Now, let's see if we can understand what this means physically: essentially, $a q_{1}-b q_{2}$ means that we're scaling the "position" of the particles respectively by $a$ and $b$, and make the potential depends on the resulting distance.

The conserved quantity is the "conjugate" of this distance


[^0]:    ${ }^{1}$ https://en.wikipedia.org/wiki/Chain_rule

