The Theoretical Minimum Classical Mechanics - Solutions L10E01

Last version: tales.mbivert.com/on-the-theoretical-minimum-solutions/ or github.com/mbivert/ttm

M. Bivert

May 10, 2023

Exercise 1. Prove Eq. (14)

Eq. (14) of the book refers to:

$$\{F(q,p), p_i\} = \frac{\partial F(q,p)}{\partial q_i}$$

Where the brackets $\{.,.\}$ are the Poisson Brackets: for A and B each two functions of 2N variables $\{p_i\}_{1 \le i \le N}$ and $\{q_i\}_{1 \le i \le N}$, $(N \in \mathbb{N})$:

$$\{A,B\} = \sum_{i=1}^{N} \frac{\partial A}{\partial q_i} \frac{\partial B}{\partial p_i} - \frac{\partial A}{\partial p_i} \frac{\partial B}{\partial q_i}$$

And F(p,q) a function of q and p. There's a bit of ambiguity regarding what p and q are, which actually doesn't affect the derivation, but let's make things clear anyway. In the previous example, we proved that $\{q^n, p\} = nq^{n-1}$: in this case, N = 1 and we had a single q and a single p.

But now we're asked to prove a result involving F(p,q) partially derived according to q_i , which implies, for the result not to be trivial, that F is a function of q_i , and thus that p and q are actually tuples of N p_i and $N q_i$.

So, let's expand the Poisson brackets to be evaluated, using the definition of the Poisson brackets:

$$\{F(q,p),p_i\} = \sum_{k=1}^N \frac{\partial}{\partial q_k} F(q_1,\cdots,q_N,p_1,\cdots,p_N) \frac{\partial p_i}{\partial p_k} - \frac{\partial}{\partial p_k} F(q_1,\cdots,q_N,p_1,\cdots,p_N) \frac{\partial p_i}{\partial q_k}$$

Now because p_i will never depends on q_k , as those are two distinct variables, $\frac{\partial p_i}{\partial q_k} = 0$, and the previous expression shrinks to:

$$\{F(q,p),p_i\} = \sum_{k=1}^N \frac{\partial}{\partial q_k} F(q_1,\cdots,q_N,p_1,\cdots,p_N) \frac{\partial p_i}{\partial p_k}$$

For similar reasons, $\frac{\partial p_i}{\partial p_k} = \delta_i^k$, and the previous expression shrinks again to:

$$\{F(q,p),p_i\} = \frac{\partial}{\partial q_i} F(q_1,\cdots,q_N,p_1,\cdots,p_N) = \boxed{\frac{\partial F(p,q)}{\partial q_i}}$$

Remark 1. Eq. (15) of the book is to be proven as we did for Eq. (14).

Remark 2. Earlier in this section, the authors informally invited us to verify the properties of the Poisson brackets (anti-symmetry, linearity, product rule). I won't be doing it, because I think at this stage of the book, this should be elementary: you just have to replace the brackets by their definition, and re-arrange the terms, often using linearity of the differentiation/partial differentiation, and then switch back to expressions involving (the expected) Poisson brackets again.