The Theoretical Minimum
 Classical Mechanics - Solutions

L10E01
Last version: tales.mbivert.com/on-the-theoretical-minimum-solutions/ or github.com/mbivert/ttm
M. Bivert

May 10, 2023

Exercise 1. Prove Eq. (14)

Eq. (14) of the book refers to:

$$
\left\{F(q, p), p_{i}\right\}=\frac{\partial F(q, p)}{\partial q_{i}}
$$

Where the brackets $\{.,$.$\} are the Poisson Brackets: for A$ and B each two functions of $2 N$ variables $\left\{p_{i}\right\}_{1 \leq i \leq N}$ and $\left\{q_{i}\right\}_{1 \leq i \leq N},(N \in \mathbb{N})$:

$$
\{A, B\}=\sum_{i=1}^{N} \frac{\partial A}{\partial q_{i}} \frac{\partial B}{\partial p_{i}}-\frac{\partial A}{\partial p_{i}} \frac{\partial B}{\partial q_{i}}
$$

And $F(p, q)$ a function of q and p. There's a bit of ambiguity regarding what p and q are, which actually doesn't affect the derivation, but let's make things clear anyway. In the previous example, we proved that $\left\{q^{n}, p\right\}=n q^{n-1}$: in this case, $N=1$ and we had a single q and a single p.

But now we're asked to prove a result involving $F(p, q)$ partially derived according to q_{i}, which implies, for the result not to be trivial, that F is a function of q_{i}, and thus that p and q are actually tuples of N p_{i} and $N q_{i}$.

So, let's expand the Poisson brackets to be evaluated, using the definition of the Poisson brackets:

$$
\left\{F(q, p), p_{i}\right\}=\sum_{k=1}^{N} \frac{\partial}{\partial q_{k}} F\left(q_{1}, \cdots, q_{N}, p_{1}, \cdots, p_{N}\right) \frac{\partial p_{i}}{\partial p_{k}}-\frac{\partial}{\partial p_{k}} F\left(q_{1}, \cdots, q_{N}, p_{1}, \cdots, p_{N}\right) \frac{\partial p_{i}}{\partial q_{k}}
$$

Now because p_{i} will never depends on q_{k}, as those are two distinct variables, $\frac{\partial p_{i}}{\partial q_{k}}=0$, and the previous expression shrinks to:

$$
\left\{F(q, p), p_{i}\right\}=\sum_{k=1}^{N} \frac{\partial}{\partial q_{k}} F\left(q_{1}, \cdots, q_{N}, p_{1}, \cdots, p_{N}\right) \frac{\partial p_{i}}{\partial p_{k}}
$$

For similar reasons, $\frac{\partial p_{i}}{\partial p_{k}}=\delta_{i}^{k}$, and the previous expression shrinks again to:

$$
\left\{F(q, p), p_{i}\right\}=\frac{\partial}{\partial q_{i}} F\left(q_{1}, \cdots, q_{N}, p_{1}, \cdots, p_{N}\right)=\frac{\partial F(p, q)}{\partial q_{i}}
$$

Remark 1. Eq. (15) of the book is to be proven as we did for Eq. (14).
Remark 2. Earlier in this section, the authors informally invited us to verify the properties of the Poisson brackets (anti-symmetry, linearity, product rule). I won't be doing it, because I think at this stage of the book, this should be elementary: you just have to replace the brackets by their definition, and re-arrange the terms, often using linearity of the differentiation/partial differentiation, and then switch back to expressions involving (the expected) Poisson brackets again.

