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Exercise 1. Hamilton’s equations can be written in the form ¢ = {q, H} and p = {p, H}. Assume that
1

the Hamiltonian has the form H = 2—p2 + V(q). Using only the PB azxioms, prove Newton’s equations
m

of motion.

So, the goal of this exercise is to derive Newton’s equations of motion, meaning, a ”variant” of F' = ma,
without referring directly to the definition of the Poisson brackets, but rather, using its algebraic prop-
erties. Let’s recall them for clarity.

Let A, B, and C be functions of ¢s and ps; k € R:

Anti-symmetry :
{A,C} = —{C, AL

Linearity :

{kA,C} = k{A,C};
{A+B,C}={A,C}+{B,C};

”Product rule” :

{AB,C} = A{B,C} + B{A,C}
We’ll also need the following;:
{a-0;} = {pisp} =0;  {ap;} =6}

And Eq. (14) and Eq. (15) of the book, which are respectively, for F' a function of ¢s and ps:

{F(%p),pi} = aP;(;ip)
{F(Q7p)aQZ} = 7%}2}?)

Alright, let’s start by observing that we’re in the case were N = 1: we have a single p and a single q.
Then, let’s begin by applying the anti-symmetry rule to ¢ = {q¢, H} = —{H, ¢}.

We have two options to go further:
1. Either we expand the expression of H and keep applying some rules further;

2. Or, as H = H(p,q), we can also apply Eq. (15).
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Let’s try both, in this order (we should get the same result):

¢ = {¢,H}
= —{H,q} (anti-symmetry)

1
= —{%pz +V(q),q} (H’s definition)

= o V@) (lmearity)

Using the product rule, we can develop

{r*.q} = {pp,a} = p{p. 4} + p{p, 4} = 2p{p. ¢}

But then, this is just {¢;,p;} = §g , modulo some anti-symmetry (as we only have one p and one ¢, they
always "match” as far as the Kronecker delta is concerned):

{r*,q} = 2p{p,q} = —2p{q,p} = —2p

What about {V(q), q}? We can get there in two ways: either we consider that V(¢) = V (¢, p) with no
p, and thus by Eq. (15),

V(a)a} = {V(g.p) q} = ngop) ~0

But we could also argue that V' (g) can be expressed as a polynomial in ¢; then, by linearity of the Poisson
brackets on the terms of that polynomial, we would be able to apply the {¢;, ¢;} = 0; systematically, and
also get zero.

Finally, this leaves us with:
. 1
§=—5-{"a}+{V(a).q}
M a_~— ——
=—2p =0

By re-arranging the terms a little, we get the definition of the moment:
p=mg

We'll continue from here in a moment, but first, let’s explore the second option we mentioned earlier,
and use Eq. (15) directly after the application of the anti-symmetry on ¢ = {q, H }:

q = {g. H}

= —{H,q} (anti-symmetry)
= —{H(p,q),q}
9H (g, p)

- T (Eq. (15))

_ 8 ]- 2 Pl .o
= 3 <2mp + V(q)> (H’s definition)
1

—p
m
Which indeed agrees with our previous result: p = mgq.

OK we’ve found back the definition of the moment, now what? We’d want to find a way to use p = {p, H},
but we have no p, so let’s make one by deriving the definition of the moment:

p=mq=p=mq

We’ll soon find ourselves in the same situation as before, where we can continue the derivation either by
applying Eq. (14), or by following a more "manual” path; I'll go with the latter as this is a bit more
verbose:



mq

D

{p, H}

—{H,p}

—{%ﬁ +V(q),p}
—ﬁ{pp,p} +{V(q),p}

—%Qp {p,p} +{V(q), p}
m N —"

(anti-symmetry)
(H’s definition)
(linearity)
(product rule)
({pi-pj} =0)
(Eq. (14))

(forces are derived from potential)
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