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Exercise 1. Hamilton’s equations can be written in the form q̇ = {q,H} and ṗ = {p,H}. Assume that

the Hamiltonian has the form H =
1

2m
p2 + V (q). Using only the PB axioms, prove Newton’s equations

of motion.

So, the goal of this exercise is to derive Newton’s equations of motion, meaning, a ”variant” of F = ma,
without referring directly to the definition of the Poisson brackets, but rather, using its algebraic prop-
erties. Let’s recall them for clarity.

Let A, B, and C be functions of qs and ps; k ∈ R:

Anti-symmetry :
{A,C} = −{C,A};

Linearity :
{kA,C} = k{A,C};

{A+B,C} = {A,C}+ {B,C};

”Product rule” :
{AB,C} = A{B,C}+B{A,C}

We’ll also need the following:

{qi, qj} = {pi, pj} = 0; {qi, pj} = δji

And Eq. (14) and Eq. (15) of the book, which are respectively, for F a function of qs and ps:

{F (q, p), pi} =
∂F (q, p)

∂qi

{F (q, p), qi} = −∂F (q, p)

∂pi

Alright, let’s start by observing that we’re in the case were N = 1: we have a single p and a single q.
Then, let’s begin by applying the anti-symmetry rule to q̇ = {q,H} = −{H, q}.

We have two options to go further:

1. Either we expand the expression of H and keep applying some rules further;

2. Or, as H = H(p, q), we can also apply Eq. (15).
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Let’s try both, in this order (we should get the same result):

q̇ = {q,H}
= −{H, q} (anti-symmetry)

= −{ 1

2m
p2 + V (q), q} (H’s definition)

= − 1

2m
{p2, q}+ {V (q), q} (linearity)

Using the product rule, we can develop

{p2, q} = {pp, q} = p{p, q}+ p{p, q} = 2p{p, q}

But then, this is just {qi, pj} = δji , modulo some anti-symmetry (as we only have one p and one q, they
always ”match” as far as the Kronecker delta is concerned):

{p2, q} = 2p{p, q} = −2p{q, p} = −2p

What about {V(q), q}? We can get there in two ways: either we consider that V (q) = V (q, p) with no
p, and thus by Eq. (15),

{V (q), q} = {V (q, p), q} =
∂V (q, p)

∂p
= 0

But we could also argue that V (q) can be expressed as a polynomial in q; then, by linearity of the Poisson
brackets on the terms of that polynomial, we would be able to apply the {qi, qj} = 0; systematically, and
also get zero.

Finally, this leaves us with:

q̇ = − 1

2m
{p2, q}︸ ︷︷ ︸
=−2p

+ {V (q), q}︸ ︷︷ ︸
=0

By re-arranging the terms a little, we get the definition of the moment:

p = mq̇

We’ll continue from here in a moment, but first, let’s explore the second option we mentioned earlier,
and use Eq. (15) directly after the application of the anti-symmetry on q̇ = {q,H}:

q̇ = {q,H}
= −{H, q} (anti-symmetry)

= −{H(p, q), q}

=
∂H(q, p)

∂p
(Eq. (15))

=
∂

∂p

(
1

2m
p2 + V (q)

)
(H’s definition)

=
1

m
p

Which indeed agrees with our previous result: p = mq̇.

OK we’ve found back the definition of the moment, now what? We’d want to find a way to use ṗ = {p,H},
but we have no ṗ, so let’s make one by deriving the definition of the moment:

p = mq̇ ⇒ ṗ = mq̈

We’ll soon find ourselves in the same situation as before, where we can continue the derivation either by
applying Eq. (14), or by following a more ”manual” path; I’ll go with the latter as this is a bit more
verbose:
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mq̈ = ṗ

= {p,H}
= −{H, p} (anti-symmetry)

= −{ 1

2m
p2 + V (q), p} (H’s definition)

= − 1

2m
{pp, p}+ {V (q), p} (linearity)

= − 1

2m
2p {p, p}︸ ︷︷ ︸

=0

+{V (q), p} (product rule)

= {V (q), p} ({pi, pj} = 0)

=
∂

∂q
V (q) (Eq. (14))

=
∂

∂q
V (q) (forces are derived from potential)

= Fq
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