The Theoretical Minimum
 Classical Mechanics - Solutions

L10E02

Last version: tales.mbivert.com/on-the-theoretical-minimum-solutions/ or github.com/mbivert/ttm
M. Bivert

May 10, 2023

Exercise 1. Hamilton's equations can be written in the form $\dot{q}=\{q, H\}$ and $\dot{p}=\{p, H\}$. Assume that the Hamiltonian has the form $H=\frac{1}{2 m} p^{2}+V(q)$. Using only the PB axioms, prove Newton's equations of motion.

So, the goal of this exercise is to derive Newton's equations of motion, meaning, a "variant" of $F=m a$, without referring directly to the definition of the Poisson brackets, but rather, using its algebraic properties. Let's recall them for clarity.

Let A, B, and C be functions of $q \mathrm{~s}$ and $p \mathrm{~s} ; k \in \mathbb{R}$:

Anti-symmetry :

$$
\{A, C\}=-\{C, A\}
$$

Linearity :

$$
\begin{gathered}
\{k A, C\}=k\{A, C\} \\
\{A+B, C\}=\{A, C\}+\{B, C\}
\end{gathered}
$$

"Product rule":

$$
\{A B, C\}=A\{B, C\}+B\{A, C\}
$$

We'll also need the following:

$$
\left\{q_{i}, q_{j}\right\}=\left\{p_{i}, p_{j}\right\}=0 ; \quad\left\{q_{i}, p_{j}\right\}=\delta_{i}^{j}
$$

And Eq. (14) and Eq. (15) of the book, which are respectively, for F a function of q s and $p \mathrm{~s}$:

$$
\begin{aligned}
\left\{F(q, p), p_{i}\right\} & =\frac{\partial F(q, p)}{\partial q_{i}} \\
\left\{F(q, p), q_{i}\right\} & =-\frac{\partial F(q, p)}{\partial p_{i}}
\end{aligned}
$$

Alright, let's start by observing that we're in the case were $N=1$: we have a single p and a single q. Then, let's begin by applying the anti-symmetry rule to $\dot{q}=\{q, H\}=-\{H, q\}$.

We have two options to go further:

1. Either we expand the expression of H and keep applying some rules further;
2. Or, as $H=H(p, q)$, we can also apply Eq. (15).

Let's try both, in this order (we should get the same result):

$$
\begin{array}{rlrr}
\dot{q} & = & \{q, H\} & \\
& = & -\{H, q\} & \text { (anti-symmetry) } \\
& = & -\left\{\frac{1}{2 m} p^{2}+V(q), q\right\} & \text { (H's definition) } \\
& = & -\frac{1}{2 m}\left\{p^{2}, q\right\}+\{V(q), q\} & \text { (linearity) }
\end{array}
$$

Using the product rule, we can develop

$$
\left\{p^{2}, q\right\}=\{p p, q\}=p\{p, q\}+p\{p, q\}=2 p\{p, q\}
$$

But then, this is just $\left\{q_{i}, p_{j}\right\}=\delta_{i}^{j}$, modulo some anti-symmetry (as we only have one p and one q, they always "match" as far as the Kronecker delta is concerned):

$$
\left\{p^{2}, q\right\}=2 p\{p, q\}=-2 p\{q, p\}=-2 p
$$

What about $\{\mathrm{V}(\mathrm{q}), \mathrm{q}\}$? We can get there in two ways: either we consider that $V(q)=V(q, p)$ with no p, and thus by Eq. (15),

$$
\{V(q), q\}=\{V(q, p), q\}=\frac{\partial V(q, p)}{\partial p}=0
$$

But we could also argue that $V(q)$ can be expressed as a polynomial in q; then, by linearity of the Poisson brackets on the terms of that polynomial, we would be able to apply the $\left\{q_{i}, q_{j}\right\}=0$; systematically, and also get zero.

Finally, this leaves us with:

$$
\dot{q}=-\frac{1}{2 m} \underbrace{\left\{p^{2}, q\right\}}_{=-2 p}+\underbrace{\{V(q), q\}}_{=0}
$$

By re-arranging the terms a little, we get the definition of the moment:

$$
p=m \dot{q}
$$

We'll continue from here in a moment, but first, let's explore the second option we mentioned earlier, and use Eq. (15) directly after the application of the anti-symmetry on $\dot{q}=\{q, H\}$:

$$
\begin{array}{rlrr}
\dot{q} & = & \{q, H\} & \\
& = & -\{H, q\} & \text { (anti-symmetry) } \\
& = & -\{H(p, q), q\} & \\
& = & \frac{\partial H(q, p)}{\partial p} & \text { (Eq. (15)) } \tag{15}\\
& =\frac{\partial}{\partial p}\left(\frac{1}{2 m} p^{2}+V(q)\right) & \text { (H's definition) } \\
& = & \frac{1}{m} p &
\end{array}
$$

Which indeed agrees with our previous result: $p=m \dot{q}$.

OK we've found back the definition of the moment, now what? We'd want to find a way to use $\dot{p}=\{p, H\}$, but we have no \dot{p}, so let's make one by deriving the definition of the moment:

$$
p=m \dot{q} \Rightarrow \dot{p}=m \ddot{q}
$$

We'll soon find ourselves in the same situation as before, where we can continue the derivation either by applying Eq. (14), or by following a more "manual" path; I'll go with the latter as this is a bit more verbose:

$$
\left.\begin{array}{rlr}
m \ddot{q} & = & \dot{p} \\
& = & \{p, H\} \\
& = & -\{H, p\} \\
& = & -\left\{\frac{1}{2 m} p^{2}+V(q), p\right\} \\
& = & -\frac{1}{2 m}\{p p, p\}+\{V(q), p\} \\
& = & -\frac{1}{2 m} 2 p \underbrace{\{p, p\}}_{=0}+\{V(q), p\} \\
& & \\
& & \text { (anti-symmetry) } \tag{14}\\
& & \\
& & \left.\frac{\partial}{\partial q} V(q), p\right\}
\end{array}\right)
$$

