The Theoretical Minimum

Classical Mechanics - Solutions

L10E03

Last version: tales.mbivert.com/on-the-theoretical-minimum-solutions/ or github.com/mbivert/ttm

M. Bivert

May 10, 2023

Exercise 1. Using the definition of PB's and the axioms, work out the PB's in Equations (19). Hint: In each expression, look for things in the parentheses that have non-zero Poisson Brackets with the coordinate x, y or z. For example, in the first $P B, x$ has a nonzero $P B$ with p_{x}.

Let's start by recalling Equations (19):

$$
\begin{aligned}
\left\{x, L_{z}\right\} & =\left\{x,\left(x p_{y}-y p_{x}\right)\right\} \\
\left\{y, L_{z}\right\} & =\left\{y,\left(x p_{y}-y p_{x}\right)\right\} \\
\left\{z, L_{z}\right\} & =\left\{z,\left(x p_{y}-y p_{x}\right)\right\}
\end{aligned}
$$

Then, let's make things a little clearer/regular by renaming our coordinate variables:

$$
x=q_{x} ; \quad y=q_{y} ; \quad z=q_{z}
$$

So, for $k \in\{x, y, z\}$ (that's the set containing x, y and z, not a weird Poisson bracket), then all the Poisson brackets to compute are of the form:

$$
\left\{q_{k}, L_{z}\right\}=\left\{q_{k},\left(q_{x} p_{y}-q_{y} p_{x}\right)\right\}
$$

Let's reduce it from the axioms:

$$
\begin{array}{rlrr}
\left\{q_{k}, L_{z}\right\} & = & \left\{q_{k},\left(q_{x} p_{y}-q_{y} p_{x}\right)\right\} & \\
& = & -\left\{\left(q_{x} p_{y}-q_{y} p_{x}\right), q_{k}\right\} & \text { (anti-symmetry) } \\
& = & -\left(\left\{q_{x} p_{y}, q_{k}\right\}-\left\{q_{y} p_{x}, q_{k}\right\}\right) & \text { (linearity) } \\
& = & \left\{q_{y} p_{x}, q_{k}\right\}-\left\{q_{x} p_{y}, q_{k}\right\} & \\
& =(q_{y}\left\{p_{x}, q_{k}\right\}+p_{x} \underbrace{\left\{q_{y}, q_{k}\right\}}_{=0}) & (q_{x}\left\{p_{y}, q_{k}\right\}+p_{y} \underbrace{\left\{q_{x}, q_{k}\right\}}_{=0}) & \text { (product rule) } \\
& & q_{y}\left\{p_{x}, q_{k}\right\}-q_{x}\left\{p_{y}, q_{k}\right\} & \left\{q_{i}, q_{j}\right\}=0
\end{array}
$$

Now suffice for us to evaluate that last expression with each value of k, and simplify the result with $\left\{q_{i}, p_{j}\right\}=\delta_{i}^{j}$:

$$
\begin{array}{rlr}
k=x & : & \left\{q_{x}, L_{z}\right\}=q_{y}\left\{p_{x}, q_{x}\right\}-q_{x}\left\{p_{y}, q_{x}\right\}=q_{y} \\
k=y & : & \left\{q_{x}, L_{z}\right\}=q_{y}\left\{p_{x}, q_{y}\right\}-q_{x}\left\{p_{y}, q_{y}\right\}=-q_{x} \\
k=z & : & \left\{q_{x}, L_{z}\right\}=q_{y}\left\{p_{x}, q_{z}\right\}-q_{x}\left\{p_{y}, q_{z}\right\}=0
\end{array}
$$

Or, with the original notations:

$$
\begin{aligned}
\left\{x, L_{z}\right\} & =y \\
\left\{y, L_{z}\right\} & =-x \\
\left\{z, L_{z}\right\} & =0
\end{aligned}
$$

Remark 1. Our solution slightly differs from the one in the book, as the latter contains a small sign error: the infinitesimal rotation is said to be:

$$
\begin{aligned}
\delta_{x} & =-\epsilon y \\
\delta_{y} & =\epsilon x
\end{aligned}
$$

But earlier in the 7th lecture (p135), it was defined to be, small renaming aside:

$$
\begin{aligned}
\delta_{x} & =\epsilon y \\
\delta_{y} & =-\epsilon x
\end{aligned}
$$

