The Theoretical Minimum
 Classical Mechanics - Solutions

L11E02
Last version: tales.mbivert.com/on-the-theoretical-minimum-solutions/or github.com/mbivert/ttm
M. Bivert

May 10, 2023

Exercise 1. Prove Eq. (4).
Where Eq. (4) is the following, for V a scalar field:

$$
\vec{\nabla} \times(\vec{\nabla} V(x))=0
$$

If think we can agree that $V(x)$ is actually a $V(x, y, z)$.
And $\vec{\nabla}$ is the differentiation vector operator:

$$
\vec{\nabla}=\left(\begin{array}{c}
\frac{\partial}{\partial x} \\
\frac{\partial}{\partial y} \\
\frac{\partial}{\partial z}
\end{array}\right)
$$

By this definition,

$$
\vec{\nabla} V(x, y, z)=\left(\begin{array}{l}
\frac{\partial V}{\partial x} \\
\frac{\partial V}{\partial y} \\
\frac{\partial V}{\partial z}
\end{array}\right)
$$

We also have previously established that for a field $F=\left(F_{x}, F_{y}, F_{z}\right)$:

$$
\vec{\nabla} \times F=\left(\begin{array}{l}
\frac{\partial F_{z}}{\partial y}-\frac{\partial F_{y}}{\partial z} \\
\frac{\partial F_{x}}{\partial z}-\frac{\partial F_{z}}{\partial x} \\
\frac{\partial F_{y}}{\partial x}-\frac{\partial F_{x}}{\partial y}
\end{array}\right)
$$

And so,

$$
\vec{\nabla} \times(\vec{\nabla} V(x, y, z))=\left(\begin{array}{c}
\frac{\partial}{\partial y} \frac{\partial V}{\partial z}-\frac{\partial}{\partial z} \frac{\partial V}{\partial y} \\
\frac{\partial}{\partial z} \frac{\partial V}{\partial x}-\frac{\partial}{\partial x} \frac{\partial V}{\partial z} \\
\frac{\partial}{\partial x} \frac{\partial V}{\partial y}-\frac{\partial}{\partial y} \frac{\partial V}{\partial x}
\end{array}\right)=\overrightarrow{0}
$$

Where we can conclude because of Schwarz/Clairaut's theorem 1 . This means we consider V to have continuous second partial derivatives on its domain (or, at least in a neighborhood of a point x of its domain), which is often a reasonable assumption in Physics.

[^0]
[^0]: ${ }^{1}$ https://en.wikipedia.org/wiki/Symmetry_of_second_derivatives

