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Exercise 1. Prove Eq. (4).

Where Eq. (4) is the following, for V a scalar field:

∇⃗ ×
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)
= 0

If think we can agree that V (x) is actually a V (x, y, z).

And ∇⃗ is the differentiation vector operator:
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By this definition,

∇⃗V (x, y, z) =



∂V

∂x

∂V

∂y

∂V

∂z


We also have previously established that for a field F = (Fx, Fy, Fz):

∇⃗ × F =
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And so,

∇⃗ × (∇⃗V (x, y, z)) =
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Where we can conclude because of Schwarz/Clairaut’s theorem 1. This means we consider V to have
continuous second partial derivatives on its domain (or, at least in a neighborhood of a point x of its
domain), which is often a reasonable assumption in Physics.

1https://en.wikipedia.org/wiki/Symmetry_of_second_derivatives
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