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Exercise 1. Show that the vector potentials in Equations (8) and Equations (9) both give the same
uniform magnetic field. This means that the two differ by a gradient. Find the scalar whose gradient,
when added to Equations (8), gives Equations (9).

We’re in the context of exploring how a magnetic field B must ”derive” from vector potential A:

B = ∇×A

That is:

B = ∇×A =
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Now the authors gave us two vector potential A, A′ in the referenced Equations (8) and (9):

A =

 0
bx
0

 ; A′ =

−by
0
0


And we must prove that they correspond to an uniform magnetic field pointing in the z axis with intensity
b (i.e B = (0, 0, b))
We just have to compute the curl of A and A′:

∇×A =
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 = B

Now the two vector fields must differ by gradient field generate from some scalar field s(x, y, z):

A′ = A+∇s
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Which means

∇s = A′ −A =

−by
−bx
0

 = −b

y
x
0

 =
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We can ”see” that s(x, y, z) = −bxy fits:

∂s

∂x
= −by;

∂s

∂y
= −bx
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