The Theoretical Minimum Classical Mechanics - Solutions L11E03

 $Last \ version: \ tales.mbivert.com/on-the-theoretical-minimum-solutions/ \ or \ github.com/mbivert/ttm/def (10.01\%) \ solutions/ \ or \ github.com/mbivert/ttm/def (10.01\%) \ solutions/ \ or \ github.com/mbivert/ttm/def (10.01\%) \ solutions/ \ soluti$

M. Bivert

May 10, 2023

Exercise 1. Show that the vector potentials in Equations (8) and Equations (9) both give the same uniform magnetic field. This means that the two differ by a gradient. Find the scalar whose gradient, when added to Equations (8), gives Equations (9).

We're in the context of exploring how a magnetic field B must "derive" from vector potential A:

$$B = \mathbf{\nabla} \times A$$

That is:

$$\boldsymbol{B} = \boldsymbol{\nabla} \times \boldsymbol{A} = \begin{pmatrix} \frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z} \\ \frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x} \\ \frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y} \end{pmatrix}$$

Now the authors gave us two vector potential \mathbf{A} , \mathbf{A}' in the referenced Equations (8) and (9):

$$\boldsymbol{A} = \begin{pmatrix} 0 \\ bx \\ 0 \end{pmatrix}; \qquad \boldsymbol{A}' = \begin{pmatrix} -by \\ 0 \\ 0 \end{pmatrix}$$

And we must prove that they correspond to an uniform magnetic field pointing in the z axis with intensity b (i.e $\mathbf{B} = (0, 0, b)$)

We just have to compute the curl of A and A':

$$\boldsymbol{\nabla} \times \boldsymbol{A} = \begin{pmatrix} \frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z} \\ \frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x} \\ \frac{\partial A_y}{\partial x} - \frac{\partial A_z}{\partial y} \end{pmatrix} = \begin{pmatrix} 0 - 0 \\ 0 - 0 \\ b - 0 \end{pmatrix} = \boldsymbol{B} \quad \Box$$
$$\boldsymbol{\nabla} \times \boldsymbol{A}' = \begin{pmatrix} \frac{\partial A'_z}{\partial y} - \frac{\partial A'_y}{\partial z} \\ \frac{\partial A'_x}{\partial z} - \frac{\partial A'_z}{\partial x} \\ \frac{\partial A'_y}{\partial x} - \frac{\partial A'_z}{\partial y} \end{pmatrix} = \begin{pmatrix} 0 - 0 \\ 0 - 0 \\ 0 - (-b) \end{pmatrix} = \boldsymbol{B} \quad \Box$$

Now the two vector fields must differ by gradient field generate from some scalar field s(x, y, z):

$$A' = A + \nabla s$$

Which means

$$\boldsymbol{\nabla} \boldsymbol{s} = \boldsymbol{A}' - \boldsymbol{A} = \begin{pmatrix} -by\\ -bx\\ 0 \end{pmatrix} = -b \begin{pmatrix} y\\ x\\ 0 \end{pmatrix} = \begin{pmatrix} \frac{\partial s}{\partial x}\\ \frac{\partial s}{\partial y}\\ \frac{\partial s}{\partial z} \end{pmatrix}$$

We can "see" that s(x, y, z) = -bxy fits:

$$\frac{\partial s}{\partial x} = -by; \qquad \frac{\partial s}{\partial y} = -bx$$