The Theoretical Minimum
 Quantum Mechanics - Solutions

L02E01

Last version: tales.mbivert.com/on-the-theoretical-minimum-solutions/or github.com/mbivert/ttm
M. Bivert

May 10, 2023

Exercise 1. Prove that the vector $|r\rangle$ in Eq. 2.5 is orthogonal to vector $|l\rangle$ in Eq. 2.6.

Let us recall respectively Eq. 2.5 and Eq. 2.6:

$$
|r\rangle=\frac{1}{\sqrt{2}}|u\rangle+\frac{1}{\sqrt{2}}|d\rangle \quad|l\rangle=\frac{1}{\sqrt{2}}|u\rangle-\frac{1}{\sqrt{2}}|d\rangle
$$

Orthogonality can be detected with the inner-product: $|l\rangle$ and $|r\rangle$ are orthogonals $\Leftrightarrow\langle r \mid l\rangle=\langle l \mid r\rangle=0$.

Remark 1.

The nullity of either inner-product is sufficient, because of the $\langle A \mid B\rangle=\langle B \mid A\rangle^{*}$ axiom.
For instance:

$$
\begin{aligned}
\langle l \mid r\rangle & =\left(\begin{array}{ll}
\lambda_{u}^{*} & \lambda_{d}^{*}
\end{array}\right)\binom{\rho_{u}}{\rho_{d}} \\
& =\left(\begin{array}{ll}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right)\binom{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}} \\
& =\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \\
& =0 \quad \square
\end{aligned}
$$

Or, similarly:

$$
\begin{aligned}
\langle r \mid l\rangle & =\left(\begin{array}{ll}
\rho_{u}^{*} & \rho_{d}^{*}
\end{array}\right)\binom{\lambda_{u}}{\lambda_{d}} \\
& =\left(\begin{array}{ll}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right)\binom{\frac{1}{\sqrt{2}}}{-\frac{1}{\sqrt{2}}} \\
& =\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \\
& =0 \quad \square
\end{aligned}
$$

