The Theoretical Minimum Quantum Mechanics - Solutions L02E01

 $Last\ version:\ tales.mbivert.com/on-the-theoretical-minimum-solutions/\ or\ github.com/mbivert/ttm$

M. Bivert

May 10, 2023

Exercise 1. Prove that the vector $|r\rangle$ in Eq. 2.5 is orthogonal to vector $|l\rangle$ in Eq. 2.6.

Let us recall respectively Eq. 2.5 and Eq. 2.6:

$$|r\rangle = \frac{1}{\sqrt{2}}|u\rangle + \frac{1}{\sqrt{2}}|d\rangle \qquad \qquad |l\rangle = \frac{1}{\sqrt{2}}|u\rangle - \frac{1}{\sqrt{2}}|d\rangle$$

Orthogonality can be detected with the inner-product: $|l\rangle$ and $|r\rangle$ are orthogonals $\Leftrightarrow \langle r|l\rangle = \langle l|r\rangle = 0$.

Remark 1.

The nullity of either inner-product is sufficient, because of the $\langle A|B \rangle = \langle B|A \rangle^*$ axiom.

For instance:

$$\begin{aligned} \langle l|r\rangle &= \begin{pmatrix} \lambda_u^* & \lambda_d^* \end{pmatrix} \begin{pmatrix} \rho_u \\ \rho_d \end{pmatrix} \\ &= \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} \\ &= \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \\ &= 0 \quad \Box \end{aligned}$$

Or, similarly:

$$\begin{aligned} \langle r|l\rangle &= \begin{pmatrix} \rho_u^* & \rho_d^* \end{pmatrix} \begin{pmatrix} \lambda_u \\ \lambda_d \end{pmatrix} \\ &= \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix} \\ &= \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \\ &= 0 \quad \Box \end{aligned}$$