The Theoretical Minimum
 Quantum Mechanics - Solutions

L02E02
Last version: tales.mbivert.com/on-the-theoretical-minimum-solutions/ or github.com/mbivert/ttm
M. Bivert

June 23, 2023

Exercise 1. Prove that $|i\rangle$ and $|o\rangle$ satisfy all of the conditions in Eqs. 2.7, 2.8 and 2.9. Are they unique in that respect?

Let us recall, in order, Eqs. 2.7, 2.8, 2.9, 2.10, which defines $|i\rangle$ and $|o\rangle$, and both 2.5 and 2.6 which defines $|r\rangle$ and $|l\rangle$:

$$
\begin{aligned}
\langle i \mid o\rangle=0 & \\
\langle o \mid u\rangle\langle u \mid o\rangle=\frac{1}{2} & \langle o \mid d\rangle\langle d \mid o\rangle=\frac{1}{2} \\
\langle i \mid u\rangle\langle u \mid i\rangle=\frac{1}{2} & \langle i \mid d\rangle\langle d \mid i\rangle=\frac{1}{2} \\
\langle o \mid r\rangle\langle r \mid o\rangle=\frac{1}{2} & \langle o \mid l\rangle\langle l \mid o\rangle=\frac{1}{2} \\
\langle i \mid r\rangle\langle r \mid i\rangle=\frac{1}{2} & \langle i \mid l\rangle\langle l \mid i\rangle=\frac{1}{2} \\
|i\rangle=\frac{1}{\sqrt{2}}|u\rangle+\frac{i}{\sqrt{2}}|d\rangle & |o\rangle=\frac{1}{\sqrt{2}}|u\rangle-\frac{i}{\sqrt{2}}|d\rangle \\
|r\rangle=\frac{1}{\sqrt{2}}|u\rangle+\frac{1}{\sqrt{2}}|d\rangle & |l\rangle=\frac{1}{\sqrt{2}}|u\rangle-\frac{1}{\sqrt{2}}|d\rangle
\end{aligned}
$$

For clarity, let us recall that $\langle u \mid A\rangle$ is the component of $|A\rangle$ along the orthonormal vector $|u\rangle$. This is because in an orthonormal basis $(|i\rangle)_{i \in F}$ we have:

$$
\begin{aligned}
|A\rangle & =\sum_{i \in F} \alpha_{i}|i\rangle \\
\Rightarrow\langle j \mid A\rangle & =\langle j| \sum_{i \in F} \alpha_{i}|i\rangle=\sum_{i \in F} \alpha_{i} \underbrace{\langle j \mid i\rangle}_{=\delta_{i j}}=\alpha_{j}
\end{aligned}
$$

And to make better sense of those equations, let us recall that $\alpha_{u}^{*} \alpha_{u}=\langle A \mid u\rangle\langle u \mid A\rangle$ is the probability of a state vector $|A\rangle=\alpha_{u}|u\rangle+\alpha_{d}|d\rangle$ to be measured in the state $|u\rangle$.
For Eq. 2.7, we have

$$
\begin{aligned}
\langle i \mid o\rangle & =\left(\begin{array}{ll}
\iota_{u}^{*} & \iota_{d}^{*}
\end{array}\right)\binom{o_{u}}{o_{d}} \\
& =\iota_{u}^{*} o_{u}+\iota_{d}^{*} o_{d} \\
& =\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}+\frac{-i}{\sqrt{2}} \frac{-i}{\sqrt{2}}=\frac{1}{2}-\frac{1}{2}=0
\end{aligned}
$$

For Eqs. 2.8, we can rely on the projection on an orthonormal vector:

$$
\begin{aligned}
\langle o \mid u\rangle\langle u \mid o\rangle & =\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}=\frac{1}{2} & \square & \langle o \mid d\rangle\langle d \mid o\rangle
\end{aligned}=\frac{i}{\sqrt{2}} \frac{-i}{\sqrt{2}}=\frac{1}{2}, ~=\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}=\frac{1}{2} \quad \square \quad i|d\rangle\langle d \mid i\rangle=\frac{-i}{\sqrt{2}} \frac{i}{\sqrt{2}}=\frac{1}{2}
$$

For Eqs. 2.9, we need to rely on the column form of the inner-product:

$$
\left.\begin{array}{rlrl}
\langle o \mid r\rangle\langle r \mid o\rangle & =\left(\begin{array}{ll}
o_{u}^{*} & o_{d}^{*}
\end{array}\right)\binom{\rho_{u}}{\rho_{d}}\left(\begin{array}{ll}
\rho_{u}^{*} & \rho_{d}^{*}
\end{array}\right)\binom{o_{u}}{o_{d}} & \langle o \mid l\rangle\langle l \mid o\rangle & =\left(\begin{array}{ll}
o_{u}^{*} & o_{d}^{*}
\end{array}\right)\binom{\lambda_{u}}{\lambda_{d}}\left(\begin{array}{ll}
\lambda_{u}^{*} & \lambda_{d}^{*}
\end{array}\right)\binom{o_{u}}{o_{d}} \\
& =\left(\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}} \frac{1}{\sqrt{2}}\right)\left(\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}} \frac{-i}{\sqrt{2}}\right) & & =\left(\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}} \frac{-1}{\sqrt{2}}\right)\left(\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}+\frac{-1}{\sqrt{2}} \frac{-i}{\sqrt{2}}\right) \\
& =\left(\frac{1}{2}+\frac{i}{2}\right)\left(\frac{1}{2}-\frac{i}{2}\right) & & =\left(\frac{1}{2}-\frac{i}{2}\right)\left(\frac{1}{2}+\frac{i}{2}\right) \\
& =\frac{1}{4}(1+i)(1-i) \\
& =\frac{1}{4}(1+i-i+1)=\frac{1}{2} & \square & \\
\hline
\end{array}\right)
$$

Regarding the unicity of $|i\rangle,|o\rangle$, as for $|r\rangle,|l\rangle$, there definitely is a phase ambiguity, meaning, we can multiply either $|i\rangle$ or $|o\rangle$ by a phase factor, say $e^{i \theta}$, without disturbing any of the constraints: orthogonality, probabilities, and the resulting vectors are still unitary.

But as stated by the authors for $|r\rangle,|l\rangle$, measurable quantities are independant of any phase factors. Thus, so far, there seems to be unicity, up to such a phase factor.

Remark 1. I think some sort of dimensional argument might be required to rigorously prove that indeed there's no way to extract more than three pairs of mutually orthogonal vectors which have a inner-product to $1 / 2$, in a \mathbb{C}-vector space setting.

