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Exercise 1. Prove that |i⟩ and |o⟩ satisfy all of the conditions in Eqs. 2.7, 2.8 and 2.9. Are they unique
in that respect?

Let us recall, in order, Eqs. 2.7, 2.8, 2.9, 2.10, which defines |i⟩ and |o⟩, and both 2.5 and 2.6 which
defines |r⟩ and |l⟩:
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For clarity, let us recall that ⟨u|A⟩ is the component of |A⟩ along the orthonormal vector |u⟩. This is
because in an orthonormal basis (|i⟩)i∈F we have:

|A⟩ =
∑
i∈F

αi|i⟩

⇒ ⟨j|A⟩ = ⟨j|
∑
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=δij

= αj

1

https://tales.mbivert.com/on-the-theoretical-minimum-solutions/
https://github.com/mbivert/ttm


And to make better sense of those equations, let us recall that α∗
uαu = ⟨A|u⟩ ⟨u|A⟩ is the probability of

a state vector |A⟩ = αu|u⟩+ αd|d⟩ to be measured in the state |u⟩.
For Eq. 2.7, we have
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For Eqs. 2.8, we can rely on the projection on an orthonormal vector:
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For Eqs. 2.9, we need to rely on the column form of the inner-product:
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Regarding the unicity of |i⟩, |o⟩, as for |r⟩, |l⟩, there definitely is a phase ambiguity, meaning, we can mul-
tiply either |i⟩ or |o⟩ by a phase factor, say eiθ, without disturbing any of the constraints: orthogonality,
probabilities, and the resulting vectors are still unitary.

But as stated by the authors for |r⟩, |l⟩, measurable quantities are independant of any phase factors.
Thus, so far, there seems to be unicity, up to such a phase factor.

Remark 1. I think some sort of dimensional argument might be required to rigorously prove that indeed
there’s no way to extract more than three pairs of mutually orthogonal vectors which have a inner-product
to 1/2, in a C-vector space setting.
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