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Exercise 1. Prove that |i) and |o) satisfy all of the conditions in Eqs. 2.7, 2.8 and 2.9. Are they unique
in that respect?

Let us recall, in order, Eqs. 2.7, 2.8, 2.9, 2.10, which defines |¢) and |o), and both 2.5 and 2.6 which
defines |r) and |I):

(ilo) =0
(ol (ulo) = (old) (dlo) =
(lu) (uli) = (il () = &
olr) {rlo) = 5 (olt (o) =
(lr) (rli) = 5 Gy ) = &
V2 va IR
Iy =5l + 519 = sl = 1)

For clarity, let us recall that (u|A) is the component of |A) along the orthonormal vector |u). This is
because in an orthonormal basis (]i));er we have:
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And to make better sense of those equations, let us recall that o, = (A|u) (u|A) is the probability of
a state vector |A) = ay,|u) + aq|d) to be measured in the state |u).
For Eq. 2.7, we have

(ilo) = (5 ©3) (f;;)
=120y + 1304
11 =i
T2V VBvR

=0 0O

1 1
2 2

For Eqgs. 2.8, we can rely on the projection on an orthonormal vector:
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For Egs. 2.9, we need to rely on the column form of the inner-product:
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Regarding the unicity of |i), |o), as for |r), |I), there definitely is a phase ambiguity, meaning, we can mul-
tiply either |i) or |o) by a phase factor, say €, without disturbing any of the constraints: orthogonality,
probabilities, and the resulting vectors are still unitary.

But as stated by the authors for |r),|l), measurable quantities are independant of any phase factors.
Thus, so far, there seems to be unicity, up to such a phase factor.

Remark 1. [ think some sort of dimensional argument might be required to rigorously prove that indeed
there’s no way to extract more than three pairs of mutually orthogonal vectors which have a inner-product
to 1/2, in a C-vector space setting.



