The Theoretical Minimum
 Quantum Mechanics - Solutions

L02E03
Last version: tales.mbivert.com/on-the-theoretical-minimum-solutions/or github.com/mbivert/ttm
M. Bivert

June 23, 2023

Exercise 1. For the moment, forget that Eqs. 2.10 give us working definitions for $|i\rangle$ and $|o\rangle$ in terms of $|u\rangle$ and $|d\rangle$, and assume that the components α, β, γ and δ are unknown:

$$
|o\rangle=\alpha|u\rangle+\beta|d\rangle \quad|i\rangle=\gamma|u\rangle+\delta|d\rangle
$$

a) Use Eqs. 2.8 to show that

$$
\alpha^{*} \alpha=\beta^{*} \beta=\gamma^{*} \gamma=\delta^{*} \delta=\frac{1}{2}
$$

b) Use the above results and Eqs. 2.9 to show that

$$
\alpha^{*} \beta+\alpha \beta^{*}=\gamma^{*} \delta+\gamma \delta^{*}=0
$$

c) Show that $\alpha^{*} \beta$ and $\gamma^{*} \delta$ must each be pure imaginary.

If $\alpha^{*} \beta$ is pure imaginary, then α and β cannot both be real. The same reasoning applies to $\gamma^{*} \delta$.

Let's start by recalling Eqs. 2.8, 2.9 and 2.10, which are respectively:

$$
\begin{align*}
\langle o \mid u\rangle\langle u \mid o\rangle=\frac{1}{2} & \langle o \mid d\rangle\langle d \mid o\rangle=\frac{1}{2} \\
\langle i \mid u\rangle\langle u \mid i\rangle=\frac{1}{2} & \langle i \mid d\rangle\langle d \mid i\rangle=\frac{1}{2} \tag{1}\\
\langle o \mid r\rangle\langle r \mid o\rangle=\frac{1}{2} & \langle o \mid l\rangle\langle l \mid o\rangle=\frac{1}{2} \tag{2}\\
\langle i \mid r\rangle\langle r \mid i\rangle=\frac{1}{2} & \langle i \mid l\rangle\langle l \mid i\rangle=\frac{1}{2} \\
|i\rangle=\frac{1}{\sqrt{2}}|u\rangle+\frac{i}{\sqrt{2}}|d\rangle & |o\rangle=\frac{1}{\sqrt{2}}|u\rangle-\frac{i}{\sqrt{2}}|d\rangle \tag{3}
\end{align*}
$$

a) Let's start by recalling that the inner-product in a Hilbert space is defined between a bra and a ket, and that it should satisfy at least the following axioms:

$$
\begin{gathered}
\langle C|\{|A\rangle+|B\rangle\}=\langle C \mid A\rangle+\langle C \mid B\rangle \text { (linearity) } \\
\langle B \mid A\rangle=\langle A \mid B\rangle^{*} \text { (complex conjugation) }
\end{gathered}
$$

Furthermore, the scalar-multiplication of a ket is linear:

$$
z \in \mathbb{C}, \quad|z A\rangle=z|A\rangle
$$

Then we can multiply $|o\rangle=\alpha|u\rangle+\beta|d\rangle$ to the left by $\langle u|$ to compute $\langle u \mid o\rangle$, using the linearity of the inner-product/scalar multiplication, and the fact that $|u\rangle$ and $|d\rangle$ are, by definition, unitary orthogonal vectors (meaning, $\langle u \mid d\rangle=0$ and $\langle u \mid u\rangle=\langle d \mid d\rangle=1$)

$$
\langle u \mid o\rangle=\alpha\langle u \mid u\rangle+\beta\langle u \mid d\rangle=\alpha
$$

Because of the complex conjugation rule, we have

$$
\langle o \mid u\rangle=\langle u \mid o\rangle^{*}=\alpha^{*}
$$

And so by Eqs. 2.8 and the previous computation we have

$$
\frac{1}{2}=\underbrace{\langle o \mid u\rangle}_{\alpha} \underbrace{\langle u \mid o\rangle}_{\alpha^{*}}=\alpha \alpha^{*}
$$

The process is very similar to prove $\beta^{*} \beta=\gamma^{*} \gamma=\delta^{*} \delta=\frac{1}{2}$:

$$
\begin{array}{rlr}
\frac{1}{2} & = & \langle o \mid d\rangle\langle d \mid o\rangle \\
& = & (\langle d \mid o\rangle)^{*}\langle d \mid o\rangle \\
& =(\langle d|\{\alpha|u\rangle+\beta|d\rangle\})^{*}(\langle d|\{\alpha|u\rangle+\beta|d\rangle\}) \\
& =(\alpha \underbrace{\langle d \mid u\rangle}_{=0}+\beta \underbrace{\langle d \mid d\rangle}_{=1})^{*}(\alpha \underbrace{\langle d \mid u\rangle}_{=0}+\beta \underbrace{\langle d \mid d\rangle}_{=1}) \\
& = & \beta^{*} \beta \quad \square
\end{array}
$$

$$
\begin{array}{rrr}
\frac{1}{2} & = & \langle i \mid u\rangle\langle u \mid i\rangle \\
& = & (\langle u \mid i\rangle)^{*}\langle u \mid i\rangle \\
& = & (\langle u|\{\gamma|u\rangle+\delta|d\rangle\})^{*}(\langle u|\{\gamma|u\rangle+\delta|d\rangle\}) \\
& = & (\gamma \underbrace{\langle u \mid u\rangle}_{=1}+\delta \underbrace{\langle u \mid d\rangle}_{=0})^{*}(\gamma \underbrace{\langle u \mid u\rangle}_{=1}+\delta \underbrace{\langle u \mid d\rangle}_{=0}) \\
& = & \gamma^{*} \gamma \quad \square
\end{array}
$$

$$
\frac{1}{2}=\quad\langle i \mid d\rangle\langle d \mid i\rangle
$$

$$
=\quad(\langle d \mid i\rangle)^{*}\langle d \mid i\rangle
$$

$$
=(\langle d|\{\gamma|u\rangle+\delta|d\rangle\})^{*}(\langle d|\{\gamma|u\rangle+\delta|d\rangle\})
$$

$$
=(\gamma \underbrace{\langle d \mid u\rangle}_{=0}+\delta \underbrace{\langle d \mid d\rangle}_{=1})^{*}(\gamma \underbrace{\langle d \mid u\rangle}_{=0}+\delta \underbrace{\langle d \mid d\rangle}_{=1})
$$

$$
=\quad \delta^{*} \delta
$$

b) I don't think we can conclude here without recalling the definition of $|r\rangle$:

$$
|r\rangle=\frac{1}{\sqrt{2}}|u\rangle+\frac{1}{\sqrt{2}}|d\rangle
$$

Let's start with a piece from Eqs. 2.9, arbitrarily (we could use $\langle i \mid l\rangle\langle l \mid i\rangle=\frac{1}{2}$, but I think we'd still need the previous definition of $|r\rangle$):

$$
\langle i \mid r\rangle\langle r \mid i\rangle=\frac{1}{2}
$$

But:

$$
\langle r \mid i\rangle=\langle r|\{\alpha+|u\rangle+\beta|d\rangle\}=\alpha\langle r \mid u\rangle+\beta\langle r \mid d\rangle
$$

And:

$$
\langle i \mid r\rangle=(\langle r \mid i\rangle)^{*}=(\alpha\langle r \mid u\rangle+\beta\langle r \mid d\rangle)^{*}=\alpha^{*}\langle u \mid r\rangle+\beta^{*}\langle d \mid r\rangle
$$

So

$$
\begin{gathered}
\langle i \mid r\rangle\langle r \mid i\rangle=\frac{1}{2} \\
\Leftrightarrow\left(\alpha^{*}\langle u \mid r\rangle+\beta^{*}\langle d \mid r\rangle\right)(\alpha\langle r \mid u\rangle+\beta\langle r \mid d\rangle)=\frac{1}{2} \\
\Leftrightarrow \underbrace{\alpha^{*} \alpha}_{=1 / 2}\langle u \mid r\rangle\langle r \mid u\rangle+\alpha^{*} \beta\langle u \mid r\rangle\langle r \mid d\rangle+\beta^{*} \alpha\langle d \mid r\rangle\langle r \mid u\rangle+\underbrace{\beta^{*} \beta}_{=1 / 2}\langle d \mid r\rangle\langle r \mid d\rangle=\frac{1}{2} \\
\Leftrightarrow \frac{1}{2}(\langle u \mid r\rangle\langle r \mid u\rangle+\langle d \mid r\rangle\langle r \mid d\rangle)+\alpha^{*} \beta\langle u \mid r\rangle\langle r \mid d\rangle+\beta^{*} \alpha\langle d \mid r\rangle\langle r \mid u\rangle=\frac{1}{2}
\end{gathered}
$$

Now if $|r\rangle=\rho_{u}|u\rangle+\rho_{d}|d\rangle$, then

$$
\langle u \mid r\rangle\langle r \mid u\rangle+\langle d \mid r\rangle\langle r \mid d\rangle=\rho_{u} \rho_{u}^{*}+\rho_{d} \rho_{d}^{*}=1
$$

As $\rho_{u} \rho_{u}^{*}$ would be the probability of $|r\rangle$ to be up, and $\rho_{d} \rho_{d}^{*}$ would the probability of $|r\rangle$ to be down, which are two orthogonal states in a two-states setting, and so the sum of their probability must be 1 .

Hence the previous expression becomes:

$$
\alpha^{*} \beta\langle u \mid r\rangle\langle r \mid d\rangle+\beta^{*} \alpha\langle d \mid r\rangle\langle r \mid u\rangle=0
$$

Note that so far, we haven't needed the expression of $|r\rangle$, but I think we don't have a choice but to use it to conclude:

$$
|r\rangle=\frac{1}{\sqrt{2}}|u\rangle+\frac{1}{\sqrt{2}}|d\rangle
$$

So, as the coefficient are real numbers:

$$
\langle u \mid r\rangle=\frac{1}{\sqrt{2}}=\langle r \mid u\rangle ; \quad\langle d \mid r\rangle=\frac{1}{\sqrt{2}}=\langle r \mid d\rangle
$$

Replacing in the previous expression we have:

$$
\begin{gathered}
\alpha^{*} \beta \underbrace{\langle u \mid r\rangle}_{=1 / \sqrt{2}} \underbrace{\langle r \mid d\rangle}_{=1 / \sqrt{2}}+\beta^{*} \alpha \underbrace{\langle d \mid r\rangle}_{=1 / \sqrt{2}=1 / \sqrt{2}} \underbrace{\langle r \mid u\rangle}=0 \\
\Leftrightarrow \frac{1}{2} \alpha^{*} \beta+\frac{1}{2} \beta^{*} \alpha=0 \\
\Leftrightarrow \alpha^{*} \beta+\beta^{*} \alpha=0
\end{gathered}
$$

The process is very similar to prove $\gamma^{*} \delta+\gamma \delta^{*}=0$; one has to start again from a Eqs. 2.9, but this time, from another piece involving o, arbitrarily:

$$
\begin{gathered}
\langle o \mid r\rangle\langle r \mid o\rangle=\frac{1}{2} \\
\Leftrightarrow(\langle r \mid o\rangle)^{*}\langle r \mid o\rangle=\frac{1}{2} \\
\Leftrightarrow(\langle r|\{\gamma|u\rangle+\delta|d\rangle\})^{*}(\langle r|\{\gamma|u\rangle+\delta|d\rangle\})=\frac{1}{2} \\
\Leftrightarrow\left(\gamma^{*}\langle u \mid r\rangle+\delta^{*}\langle d \mid r\rangle\right)(\gamma\langle r \mid u\rangle+\delta\langle r \mid d\rangle)=\frac{1}{2} \\
\Leftrightarrow \underbrace{\gamma^{*} \gamma}_{=1 / 2}\langle u \mid r\rangle\langle r \mid u\rangle+\gamma^{*} \delta\langle u \mid r\rangle\langle r \mid d\rangle+\delta^{*} \gamma\langle d \mid r\rangle\langle r \mid u\rangle+\underbrace{\delta^{*} \delta}_{=1 / 2}\langle d \mid r\rangle\langle r \mid d\rangle=\frac{1}{2} \\
\Leftrightarrow \frac{1}{2}(\underbrace{\langle u \mid r\rangle\langle r \mid u\rangle+\langle d \mid r\rangle\langle r \mid d\rangle}_{=1})+\gamma^{*} \delta\langle u \mid r\rangle\langle r \mid d\rangle+\delta^{*} \gamma\langle d \mid r\rangle\langle r \mid u\rangle=\frac{1}{2} \\
\Leftrightarrow \gamma^{*} \delta \underbrace{\langle u \mid r\rangle\langle r \mid d\rangle}_{=1 / 2}+\delta^{*} \gamma \underbrace{\langle d \mid r\rangle\langle r \mid u\rangle}_{=1 / 2}=0 \\
\Leftrightarrow \gamma^{*} \delta+\delta^{*} \gamma=0
\end{gathered}
$$

c) Let's assume $\alpha \beta^{*}$ is a complex number of the form:

$$
\alpha \beta^{*}=a+i b, \quad(a, b) \in \mathbb{R}^{2}
$$

But then:

$$
\left(\alpha \beta^{*}\right)^{*}=a-i b=\alpha^{*} \beta
$$

That's because, for two complex numbers $z=a+i b$ and $w=x+i y$, we have:

$$
(z w)^{*}=z^{*} w^{*}
$$

Indeed:

$$
z w=(a+i b)(x+i y)=(a x-b y)+i(b x+y a)
$$

Hence:

$$
(z w)^{*}=(a x-b y)-i(b x+y a)
$$

But:

$$
z^{*} w^{*}=(a-i b)(x-i y)=(a x-b y)-i(b x+y a)
$$

Hence the result. Back to our α and β, we established in b) that:

$$
\alpha^{*} \beta+\alpha \beta^{*}=0
$$

Which is equivalent from our previous little proof to:

$$
\begin{gathered}
\alpha^{*} \beta+\left(\alpha^{*} \beta\right)^{*}=0 \\
\Leftrightarrow(a+i b)+(a-i b)=0 \Leftrightarrow 2 a=0 \Leftrightarrow a=0
\end{gathered}
$$

Which is the same as saying that the real part of $\alpha^{*} \beta$ is zero, or that it's a pure imaginary number. The exact same argument applies for $\gamma^{*} \delta$.

