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Exercise 1. For the moment, forget that Eqs. 2.10 give us working definitions for |i⟩ and |o⟩ in terms
of |u⟩ and |d⟩, and assume that the components α, β, γ and δ are unknown:

|o⟩ = α|u⟩+ β|d⟩ |i⟩ = γ|u⟩+ δ|d⟩

a) Use Eqs. 2.8 to show that

α∗α = β∗β = γ∗γ = δ∗δ =
1

2

b) Use the above results and Eqs. 2.9 to show that

α∗β + αβ∗ = γ∗δ + γδ∗ = 0

c) Show that α∗β and γ∗δ must each be pure imaginary.

If α∗β is pure imaginary, then α and β cannot both be real. The same reasoning applies to γ∗δ.

Let’s start by recalling Eqs. 2.8, 2.9 and 2.10, which are respectively:

⟨o|u⟩ ⟨u|o⟩ = 1

2
⟨o|d⟩ ⟨d|o⟩ = 1

2

⟨i|u⟩ ⟨u|i⟩ = 1

2
⟨i|d⟩ ⟨d|i⟩ = 1

2

(1)

⟨o|r⟩ ⟨r|o⟩ = 1

2
⟨o|l⟩ ⟨l|o⟩ = 1

2

⟨i|r⟩ ⟨r|i⟩ = 1

2
⟨i|l⟩ ⟨l|i⟩ = 1

2

(2)

|i⟩ = 1√
2
|u⟩+ i√

2
|d⟩ |o⟩ = 1√

2
|u⟩ − i√

2
|d⟩ (3)

a) Let’s start by recalling that the inner-product in a Hilbert space is defined between a bra and a ket,
and that it should satisfy at least the following axioms:

⟨C|{|A⟩+ |B⟩} = ⟨C|A⟩+ ⟨C|B⟩ (linearity)

⟨B|A⟩ = ⟨A|B⟩∗ (complex conjugation)

Furthermore, the scalar-multiplication of a ket is linear:

z ∈ C, |zA⟩ = z|A⟩
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Then we can multiply |o⟩ = α|u⟩ + β|d⟩ to the left by ⟨u| to compute ⟨u|o⟩, using the linearity of the
inner-product/scalar multiplication, and the fact that |u⟩ and |d⟩ are, by definition, unitary orthogonal
vectors (meaning, ⟨u|d⟩ = 0 and ⟨u|u⟩ = ⟨d|d⟩ = 1)

⟨u|o⟩ = α ⟨u|u⟩+ β ⟨u|d⟩ = α

Because of the complex conjugation rule, we have

⟨o|u⟩ = ⟨u|o⟩∗ = α∗

And so by Eqs. 2.8 and the previous computation we have

1

2
= ⟨o|u⟩︸ ︷︷ ︸

α

⟨u|o⟩︸ ︷︷ ︸
α∗

= αα∗

The process is very similar to prove β∗β = γ∗γ = δ∗δ = 1
2 :

1

2
= ⟨o|d⟩ ⟨d|o⟩

= (⟨d|o⟩)∗ ⟨d|o⟩

=
(
⟨d|{α|u⟩+ β|d⟩}

)∗(
⟨d|{α|u⟩+ β|d⟩}

)
=

(
α ⟨d|u⟩︸ ︷︷ ︸

=0

+β ⟨d|d⟩︸ ︷︷ ︸
=1

)∗(
α ⟨d|u⟩︸ ︷︷ ︸

=0

+β ⟨d|d⟩︸ ︷︷ ︸
=1

)
= β∗β

1

2
= ⟨i|u⟩ ⟨u|i⟩

= (⟨u|i⟩)∗ ⟨u|i⟩

=
(
⟨u|{γ|u⟩+ δ|d⟩}

)∗(
⟨u|{γ|u⟩+ δ|d⟩}

)
=

(
γ ⟨u|u⟩︸ ︷︷ ︸

=1

+δ ⟨u|d⟩︸ ︷︷ ︸
=0

)∗(
γ ⟨u|u⟩︸ ︷︷ ︸

=1

+δ ⟨u|d⟩︸ ︷︷ ︸
=0

)
= γ∗γ

1

2
= ⟨i|d⟩ ⟨d|i⟩

= (⟨d|i⟩)∗ ⟨d|i⟩

=
(
⟨d|{γ|u⟩+ δ|d⟩}

)∗(
⟨d|{γ|u⟩+ δ|d⟩}

)
=

(
γ ⟨d|u⟩︸ ︷︷ ︸

=0

+δ ⟨d|d⟩︸ ︷︷ ︸
=1

)∗(
γ ⟨d|u⟩︸ ︷︷ ︸

=0

+δ ⟨d|d⟩︸ ︷︷ ︸
=1

)
= δ∗δ

b) I don’t think we can conclude here without recalling the definition of |r⟩:

|r⟩ = 1√
2
|u⟩+ 1√

2
|d⟩

Let’s start with a piece from Eqs. 2.9, arbitrarily (we could use ⟨i|l⟩ ⟨l|i⟩ = 1
2 , but I think we’d still need

the previous definition of |r⟩):

⟨i|r⟩ ⟨r|i⟩ = 1

2

But:
⟨r|i⟩ = ⟨r|{α+ |u⟩+ β|d⟩} = α ⟨r|u⟩+ β ⟨r|d⟩

2



And:
⟨i|r⟩ = (⟨r|i⟩)∗ = (α ⟨r|u⟩+ β ⟨r|d⟩)∗ = α∗ ⟨u|r⟩+ β∗ ⟨d|r⟩

So

⟨i|r⟩ ⟨r|i⟩ = 1

2

⇔
(
α∗ ⟨u|r⟩+ β∗ ⟨d|r⟩

)(
α ⟨r|u⟩+ β ⟨r|d⟩

)
=

1

2

⇔ α∗α︸︷︷︸
=1/2

⟨u|r⟩ ⟨r|u⟩+ α∗β ⟨u|r⟩ ⟨r|d⟩+ β∗α ⟨d|r⟩ ⟨r|u⟩+ β∗β︸︷︷︸
=1/2

⟨d|r⟩ ⟨r|d⟩ = 1

2

⇔ 1

2

(
⟨u|r⟩ ⟨r|u⟩+ ⟨d|r⟩ ⟨r|d⟩

)
+ α∗β ⟨u|r⟩ ⟨r|d⟩+ β∗α ⟨d|r⟩ ⟨r|u⟩ = 1

2

Now if |r⟩ = ρu|u⟩+ ρd|d⟩, then

⟨u|r⟩ ⟨r|u⟩+ ⟨d|r⟩ ⟨r|d⟩ = ρuρ
∗
u + ρdρ

∗
d = 1

As ρuρ
∗
u would be the probability of |r⟩ to be up, and ρdρ

∗
d would the probability of |r⟩ to be down,

which are two orthogonal states in a two-states setting, and so the sum of their probability must be 1.

Hence the previous expression becomes:

α∗β ⟨u|r⟩ ⟨r|d⟩+ β∗α ⟨d|r⟩ ⟨r|u⟩ = 0

Note that so far, we haven’t needed the expression of |r⟩, but I think we don’t have a choice but to use
it to conclude:

|r⟩ = 1√
2
|u⟩+ 1√

2
|d⟩

So, as the coefficient are real numbers:

⟨u|r⟩ = 1√
2
= ⟨r|u⟩ ; ⟨d|r⟩ = 1√

2
= ⟨r|d⟩

Replacing in the previous expression we have:

α∗β ⟨u|r⟩︸ ︷︷ ︸
=1/

√
2

⟨r|d⟩︸︷︷︸
=1/

√
2

+β∗α ⟨d|r⟩︸︷︷︸
=1/

√
2

⟨r|u⟩︸ ︷︷ ︸
=1/

√
2

= 0

⇔ 1

2
α∗β +

1

2
β∗α = 0

⇔ α∗β + β∗α = 0

The process is very similar to prove γ∗δ+ γδ∗ = 0; one has to start again from a Eqs. 2.9, but this time,
from another piece involving o, arbitrarily:

⟨o|r⟩ ⟨r|o⟩ = 1

2

⇔
(
⟨r|o⟩

)∗
⟨r|o⟩ = 1

2

⇔
(
⟨r|{γ|u⟩+ δ|d⟩}

)∗(
⟨r|{γ|u⟩+ δ|d⟩}

)
=

1

2

⇔
(
γ∗ ⟨u|r⟩+ δ∗ ⟨d|r⟩

)(
γ ⟨r|u⟩+ δ ⟨r|d⟩

)
=

1

2

⇔ γ∗γ︸︷︷︸
=1/2

⟨u|r⟩ ⟨r|u⟩+ γ∗δ ⟨u|r⟩ ⟨r|d⟩+ δ∗γ ⟨d|r⟩ ⟨r|u⟩+ δ∗δ︸︷︷︸
=1/2

⟨d|r⟩ ⟨r|d⟩ = 1

2

⇔ 1

2

(
⟨u|r⟩ ⟨r|u⟩+ ⟨d|r⟩ ⟨r|d⟩︸ ︷︷ ︸

=1

)
+ γ∗δ ⟨u|r⟩ ⟨r|d⟩+ δ∗γ ⟨d|r⟩ ⟨r|u⟩ = 1

2

⇔ γ∗δ ⟨u|r⟩ ⟨r|d⟩︸ ︷︷ ︸
=1/2

+δ∗γ ⟨d|r⟩ ⟨r|u⟩︸ ︷︷ ︸
=1/2

= 0

⇔ γ∗δ + δ∗γ = 0
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c) Let’s assume αβ∗ is a complex number of the form:

αβ∗ = a+ ib, (a, b) ∈ R2

But then: (
αβ∗

)∗
= a− ib = α∗β

That’s because, for two complex numbers z = a+ ib and w = x+ iy, we have:(
zw

)∗
= z∗w∗

Indeed:
zw = (a+ ib)(x+ iy) = (ax− by) + i(bx+ ya)

Hence: (
zw

)∗
= (ax− by)− i(bx+ ya)

But:
z∗w∗ = (a− ib)(x− iy) = (ax− by)− i(bx+ ya)

Hence the result. Back to our α and β, we established in b) that:

α∗β + αβ∗ = 0

Which is equivalent from our previous little proof to:

α∗β +
(
α∗β

)∗
= 0

⇔ (a+ ib) + (a− ib) = 0 ⇔ 2a = 0 ⇔ a = 0

Which is the same as saying that the real part of α∗β is zero, or that it’s a pure imaginary number. The
exact same argument applies for γ∗δ.
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