The Theoretical Minimum
 Quantum Mechanics - Solutions

L03E02
Last version: tales.mbivert.com/on-the-theoretical-minimum-solutions/or github.com/mbivert/ttm
M. Bivert

May 10, 2023

Exercise 1. Prove that Eq. 3.16 is the unique solution to Eqs. 3.14 and 3.15.
Let's recall all the equations, 3.14, 3.15 and 3.16

$$
\begin{align*}
& \left(\begin{array}{ll}
\left(\sigma_{z}\right)_{11} & \left(\sigma_{z}\right)_{12} \\
\left(\sigma_{z}\right)_{21} & \left(\sigma_{z}\right)_{22}
\end{array}\right)\binom{1}{0}=\binom{1}{0} \tag{1}\\
& \left(\begin{array}{ll}
\left(\sigma_{z}\right)_{11} & \left(\sigma_{z}\right)_{12} \\
\left(\sigma_{z}\right)_{21} & \left(\sigma_{z}\right)_{22}
\end{array}\right)\binom{0}{1}=-\binom{0}{1} \tag{2}\\
& \left(\begin{array}{ll}
\left(\sigma_{z}\right)_{11} & \left(\sigma_{z}\right)_{12} \\
\left(\sigma_{z}\right)_{21} & \left(\sigma_{z}\right)_{22}
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \tag{3}
\end{align*}
$$

By developing the matrix product and identifying the vectors components, the first two equations make a system of four equations involving four unknowns $\left(\sigma_{z}\right)_{11},\left(\sigma_{z}\right)_{12},\left(\sigma_{z}\right)_{21}$ and $\left(\sigma_{z}\right)_{22}$:

$$
\left\{\begin{array} { l }
{ 1 (\sigma _ { z }) _ { 1 1 } + 0 (\sigma _ { z }) _ { 1 2 } = 1 } \tag{4}\\
{ 1 (\sigma _ { z }) _ { 2 1 } + 0 (\sigma _ { z }) _ { 2 2 } = 0 } \\
{ 0 (\sigma _ { z }) _ { 1 1 } + 1 (\sigma _ { z }) _ { 1 2 } = 0 } \\
{ 0 (\sigma _ { z }) _ { 2 1 } + 1 (\sigma _ { z }) _ { 2 2 } = - 1 }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
\left(\sigma_{z}\right)_{11}=1 \\
\left(\sigma_{z}\right)_{21}=0 \\
\left(\sigma_{z}\right)_{12}=0 \\
\left(\sigma_{z}\right)_{22}=-1
\end{array} \Leftrightarrow \sigma_{z=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)}\right.\right.
$$

Remark 1. Observe that we are (were) trying to build a Hermitian operator with eigenvalues +1 and -1 . The fundamental theorem / real spectral theorem, assures us that Hermitian operators are diagonalizable, hence there exists a basis in which the operator can be represented by a 2×2 matrix containing the eigenvalues on its diagonal:

$$
\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Which is exactly the matrix we've found.
But now of course, you'd be wondering: wait a minute, right after this exercise, we're trying to build σ_{x}, which also has those same eigenvalues +1 and -1 , what's the catch?

Well, remember the diagonalization process: M diagonalizable means that there's a basis where it's diagonal. That is, there's a change of basis, which is an invertible linear function, which has a matrix representation P, such that the linear operation represented by M in a starting basis is now represented by a diagonal matrix D :

$$
M=P D P^{-1}
$$

Furthermore:

- The elements on the diagonal of D are the eigenvalues;
- The columns of P are the corresponding eigenvectors

So regarding σ_{x}, we still have a

$$
D=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

But the catch is that before for σ_{z}, P was the identity matrix I_{2} (because of our choice for $|u\rangle$ and $|d\rangle$). But now, given our values for $|r\rangle$ and $|l\rangle$, we have:

$$
|r\rangle=\binom{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}} \quad \text { and } \quad|l\rangle=\binom{\frac{1}{\sqrt{2}}}{-\frac{1}{\sqrt{2}}} \quad \Rightarrow \quad P=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

Note that the column order matters: the first column of P must be $|r\rangle$, and the first column of D must contain the eigenvalue associated to $|r\rangle$. But:

$$
\sigma_{x}=P D P^{-1} \Leftrightarrow \sigma_{x} P=P D(\underbrace{P^{-1} P}_{:=I_{2}})=P D=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right)
$$

Hence,

$$
\sigma_{x} P=\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right) \Leftrightarrow \frac{1}{\sqrt{2}}\left(\begin{array}{cc}
\left(\sigma_{x}\right)_{11} & \left(\sigma_{x}\right)_{12} \\
\left(\sigma_{x}\right)_{21} & \left(\sigma_{x}\right)_{22}
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right)
$$

Solving for the components of σ_{x} :

$$
\Leftrightarrow\left\{\begin{array}{l}
\left(\sigma_{x}\right)_{11}+\left(\sigma_{x}\right)_{12}=1 \\
\left(\sigma_{x}\right)_{11}-\left(\sigma_{x}\right)_{12}=-1 \\
\left(\sigma_{x}\right)_{21}+\left(\sigma_{x}\right)_{22}=1 \\
\left(\sigma_{x}\right)_{21}-\left(\sigma_{x}\right)_{22}=1
\end{array}\right.
$$

Which indeed yields the expected Pauli matrix, as described in the book, and computed by the authors using a different approach:

$$
\sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

And obviously, the same can be done for σ_{y} : that's to say that, reassuringly, we reach the same results using pure linear algebra.

