The Theoretical Minimum Quantum Mechanics - Solutions L03E02

 $Last \ version: \ tales.mbivert.com/on-the-theoretical-minimum-solutions/ \ or \ github.com/mbivert/ttm and the solution of \ solution of \$

M. Bivert

May 10, 2023

Exercise 1. Prove that Eq. 3.16 is the unique solution to Eqs. 3.14 and 3.15.

Let's recall all the equations, 3.14, 3.15 and 3.16

$$\begin{pmatrix} (\sigma_z)_{11} & (\sigma_z)_{12} \\ (\sigma_z)_{21} & (\sigma_z)_{22} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
(1)

$$\begin{pmatrix} (\sigma_z)_{11} & (\sigma_z)_{12} \\ (\sigma_z)_{21} & (\sigma_z)_{22} \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = - \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
(2)

$$\begin{pmatrix} (\sigma_z)_{11} & (\sigma_z)_{12} \\ (\sigma_z)_{21} & (\sigma_z)_{22} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
(3)

By developing the matrix product and identifying the vectors components, the first two equations make a system of four equations involving four unknowns $(\sigma_z)_{11}$, $(\sigma_z)_{12}$, $(\sigma_z)_{21}$ and $(\sigma_z)_{22}$:

$$\begin{cases} 1(\sigma_z)_{11} + 0(\sigma_z)_{12} &= 1\\ 1(\sigma_z)_{21} + 0(\sigma_z)_{22} &= 0\\ 0(\sigma_z)_{11} + 1(\sigma_z)_{12} &= 0\\ 0(\sigma_z)_{21} + 1(\sigma_z)_{22} &= -1 \end{cases} \Leftrightarrow \begin{bmatrix} (\sigma_z)_{11} &= 1\\ (\sigma_z)_{21} &= 0\\ (\sigma_z)_{12} &= 0\\ (\sigma_z)_{22} &= -1 \end{bmatrix} \Leftrightarrow \begin{bmatrix} \sigma_z = \begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix} \end{bmatrix}$$
(4)

Remark 1. Observe that we are (were) trying to build a Hermitian operator with eigenvalues +1 and -1. The fundamental theorem / real spectral theorem, assures us that Hermitian operators are diagonalizable, hence there exists a basis in which the operator can be represented by a 2×2 matrix containing the eigenvalues on its diagonal:

$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Which is exactly the matrix we've found.

But now of course, you'd be wondering: wait a minute, right after this exercise, we're trying to build σ_x , which also has those same eigenvalues +1 and -1, what's the catch?

Well, remember the diagonalization process: M diagonalizable means that there's a basis where it's diagonal. That is, there's a change of basis, which is an invertible linear function, which has a matrix representation P, such that the linear operation represented by M in a starting basis is now represented by a diagonal matrix D:

$$M = PDP^{-1}$$

Furthermore:

- The elements on the diagonal of D are the eigenvalues;
- The columns of P are the corresponding eigenvectors

So regarding σ_x , we still have a

4

$$D = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

But the catch is that before for σ_z , P was the identity matrix I_2 (because of our choice for $|u\rangle$ and $|d\rangle$). But now, given our values for $|r\rangle$ and $|l\rangle$, we have:

$$|r\rangle = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} \quad and \quad |l\rangle = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix} \quad \Rightarrow \quad P = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

Note that the column order matters: the first column of P must be $|r\rangle$, and the first column of D must contain the eigenvalue associated to $|r\rangle$. But:

$$\sigma_x = PDP^{-1} \Leftrightarrow \sigma_x P = PD(\underbrace{P^{-1}P}_{:=I_2}) = PD = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1\\ 1 & 1 \end{pmatrix}$$

Hence,

$$\sigma_x P = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \Leftrightarrow \frac{1}{\sqrt{2}} \begin{pmatrix} (\sigma_x)_{11} & (\sigma_x)_{12} \\ (\sigma_x)_{21} & (\sigma_x)_{22} \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$

Solving for the components of σ_x :

$$\Leftrightarrow \begin{cases} (\sigma_x)_{11} + (\sigma_x)_{12} = 1\\ (\sigma_x)_{11} - (\sigma_x)_{12} = -1\\ (\sigma_x)_{21} + (\sigma_x)_{22} = 1\\ (\sigma_x)_{21} - (\sigma_x)_{22} = 1 \end{cases}$$

Which indeed yields the expected Pauli matrix, as described in the book, and computed by the authors using a different approach:

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

And obviously, the same can be done for σ_y : that's to say that, reassuringly, we reach the same results using pure linear algebra.