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Exercise 1. Prove that Eq. 3.16 is the unique solution to Eqs. 3.14 and 3.15.

Let’s recall all the equations, 3.14, 3.15 and 3.16(
(σz)11 (σz)12
(σz)21 (σz)22

)(
1
0

)
=

(
1
0

)
(1)

(
(σz)11 (σz)12
(σz)21 (σz)22

)(
0
1

)
= −

(
0
1

)
(2)(

(σz)11 (σz)12
(σz)21 (σz)22

)
=

(
1 0
0 −1

)
(3)

By developing the matrix product and identifying the vectors components, the first two equations make
a system of four equations involving four unknowns (σz)11, (σz)12, (σz)21 and (σz)22:

1(σz)11 + 0(σz)12 = 1

1(σz)21 + 0(σz)22 = 0

0(σz)11 + 1(σz)12 = 0

0(σz)21 + 1(σz)22 = −1

⇔


(σz)11 = 1

(σz)21 = 0

(σz)12 = 0

(σz)22 = −1

⇔ σz =

(
1 0
0 −1

)
(4)

Remark 1. Observe that we are (were) trying to build a Hermitian operator with eigenvalues +1 and −1.
The fundamental theorem / real spectral theorem, assures us that Hermitian operators are diagonalizable,
hence there exists a basis in which the operator can be represented by a 2 × 2 matrix containing the
eigenvalues on its diagonal: (

1 0
0 −1

)
Which is exactly the matrix we’ve found.

But now of course, you’d be wondering: wait a minute, right after this exercise, we’re trying to build σx,
which also has those same eigenvalues +1 and −1, what’s the catch?

Well, remember the diagonalization process: M diagonalizable means that there’s a basis where it’s
diagonal. That is, there’s a change of basis, which is an invertible linear function, which has a matrix
representation P , such that the linear operation represented by M in a starting basis is now represented
by a diagonal matrix D:

M = PDP−1

Furthermore:

• The elements on the diagonal of D are the eigenvalues;

• The columns of P are the corresponding eigenvectors
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So regarding σx, we still have a

D =

(
1 0
0 −1

)
But the catch is that before for σz, P was the identity matrix I2 (because of our choice for |u⟩ and |d⟩).
But now, given our values for |r⟩ and |l⟩, we have:

|r⟩ =


1√
2
1√
2

 and |l⟩ =


1√
2

− 1√
2

 ⇒ P =
1√
2

(
1 1
1 −1

)

Note that the column order matters: the first column of P must be |r⟩, and the first column of D must
contain the eigenvalue associated to |r⟩. But:

σx = PDP−1 ⇔ σxP = PD(P−1P︸ ︷︷ ︸
:=I2

) = PD =
1√
2
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)
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2
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Hence,

σxP =

(
1 −1
1 1

)
⇔ 1√

2

(
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)
=

1√
2

(
1 −1
1 1

)
Solving for the components of σx:

⇔


(σx)11 + (σx)12 = 1

(σx)11 − (σx)12 = −1

(σx)21 + (σx)22 = 1

(σx)21 − (σx)22 = 1

Which indeed yields the expected Pauli matrix, as described in the book, and computed by the authors
using a different approach:

σx =

(
0 1
1 0

)
And obviously, the same can be done for σy : that’s to say that, reassuringly, we reach the same results
using pure linear algebra.
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