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Exercise 1. Calculate the eigenvectors and eigenvalues of σn. Hint: Assume the eigenvector λ1 has the
form: (

cosα
sinα

)
,

where α is an unknown parameter. Plug this vector into the eigenvalue equation and solve for α in terms
of θ. Why did we use a single parameter α? Notice that our suggested column vector must have unit
length.

Let’s recall the context: we’re trying to build an operator that allows us to measure the spin of a particle.
We’ve started by building the components of such an operator, each representing our ability to measure
the spin along any of the 3D axes: σx, σy and σz. Each of them was built from the behavior of the
spin we ”measured”: we extracted from the observed behavior a set of constraints, which allowed us to
determine the components of the spin operator:

σx =

(
0 1
1 0

)
; σy =

(
0 −i
i 0

)
; σz =

(
1 0
0 −1

)
Those are individually fine to measure the spin components along the 3 main axis, but we’d like to
measure spin components along an arbitrary axis n̂. Such a measure can be performed by an operator
constructed as a linear combination of the previous three matrices:

σn = σ · n̂ =

σx

σy

σz

 ·

nx

ny

nz

 = nxσx + nyσy + nzσz

Remark 1. Remember from your linear algebra courses that matrices can be added and scaled: they
form a vector space.

The present exercise involves an arbitrary spin vector, that is, a linear combination of σx, σy and σz that
is of the form:

σn = sin θσx + cos θσz

= sin θ

(
0 1
1 0

)
+ cos θ

(
1 0
0 −1

)
=

(
cos θ sin θ
sin θ − cos θ

)
We’re then asked to look for the eigenvalues/eigenvectors of that matrix, that is, we want to understand
what kind of spin (states) can be encoded by such a matrix, and which values they can take.
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Let’s recall that to find the eigenvalues/eigenvectors, we need to diagonalize the matrix: assuming it can
be diagonalized, it means that there’s a basis where it can be expressed as a diagonal matrix; the change
of basis is encoded by a linear map, thus a matrix, and so we must be able to find an invertible matrix
P and a diagonal matrix D such that:1

σn = PDP−1 ⇔ σnP = PD

⇔
(
cos θ sin θ
sin θ − cos θ

)(
a b
c d

)
=

(
a b
c d

)(
λ1 0
0 λ2

)
=

(
λ1a λ2b
λ1c λ2d

)
Where λ1 and λ2 would be the eigenvalues, associated to the two eigenvectors:

|λ1⟩ =
(
a
c

)
; |λ2⟩ =

(
b
d

)
Note that the previous equation implies that we must have:

(∀i ∈ {1, 2}), σn|λi⟩ = λi|λi⟩

Which is equivalent to saying, where 02 is the zero 2× 2 matrix, and I2 the 2× 2 identity matrix:

σn|λi⟩ − λi|λi⟩ = 02 ⇔ (σn − I2λi)|λi⟩ = 02

If we want a non-trivial solution (i.e. |λi⟩ ≠ 0), then it follows that we must have:

σn − I2λi = 02

This means that the matrix σn − I2λi cannot be invertible (for otherwise multiplying it by its inverse
would yield, by the rule of invertibility I2, but on the other side, from the matrix’s definition, it would
yield 02, hence a contradiction, hence it’s not invertible).

Non-invertibility of a matrix translates to their determinant being zero, which means the λi solves the
following equation for λ:

det(σn − I2λ) = 0 ⇔
∣∣∣∣cos θ − λ sin θ

sin θ − cos θ − λ

∣∣∣∣ = 0

⇔ − (cos θ − λ)(cos θ + λ)− sin2 θ = 0

⇔ − (cos2 θ − λ2)− sin2 θ = 0

⇔ λ2 − (sin2 θ + cos2 θ)︸ ︷︷ ︸
=1

= 0

⇔ λ2 = 1

⇔ λ =

{
1 = λ1

−1 = λ2

Now that we have our eigenvalues, we can use them to determine the associated eigenvectors, as, remem-
ber, they are linked by:

(∀i ∈ {1, 2}), σn|λi⟩ = λi|λi⟩

And so:

σn|λ1⟩ = λ1|λ1⟩ ⇔
(
cos θ sin θ
sin θ − cos θ

)(
a
c

)
=

(
a
c

)
⇔

{
a cos θ + c sin θ = a

a sin θ − c cos θ = c

⇔

{
a(cos θ − 1) + c sin θ = 0

a sin θ + c(− cos θ − 1) = 0

1This is ”basic” linear algebra; the authors assume that you’re already familiar with it to some degree (e.g. matrix prod-
uct); don’t hesitate to refer to a more thorough course on the subject for more. I’ll quickly review here how diagonalization
works
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Consider the first equation of this system: we’re left with two main choices, depending on whether
cos θ = 1 or not. If it is, let’s take θ = 0 for instance, but this would true modulo π, then we must have
sin θ = 0, and the first equations gives us nothing of value. The second then simplifies to c = 0, thus a = 0.

Let’s now consider the case where cos θ ̸= 1. The system can be rewritten as:a =
−c sin θ

cos θ − 1
a sin θ + c(− cos θ − 1) = 0

We can inject the first equation in the second to yield:

−c sin θ

cos θ − 1
sin θ + c(− cos θ − 1) = 0 ⇔ −c sin θ

cos θ − 1
sin θ +

cos θ − 1

cos θ − 1
c(− cos θ − 1) = 0

⇔
c
(
− sin2 θ − (cos θ − 1)(cos θ + 1)

)
cos θ − 1

= 0

⇒ c(− sin2 θ − (cos2 θ − 1)) = 0

⇒ c(− (sin2 θ + cos2 θ)︸ ︷︷ ︸
=1

−1) = 0

⇒ c = 0 ⇒ a = 0

That’s a struggle; we don’t seem to be able to extract anything but the trivial solution; maybe there’s
some trigonometric trick to find the general solution2).

Instead, let’s try to use and understand the authors’ hint, which is to look for eigenvectors of the form:(
cosα
sinα

)
Why is this a reasonable choice? Let’s start by answering why we need a single parameter α: it cor-
responds to the single degree of freedom we have in this case. Let’s recall the two equivalent ways of
counting the number of degree of freedom that were given in subsection 2.5:

1. First, point the apparatus in any direction in the xz-plane (remember for comparison that in sub-
section 2.5, we were allowed to take a direction in the xyz-space). A single angle is sufficient to
encode this single direction (2 were needed in the xyz space). Furthermore, note that this angle
would have has its coordinate in the xz-plane cosα and sinα, respectively in the x and z directions.

Note that we’re really capturing directions: a point in R2 contains too much information, as we
want to identify all the points which share the same direction;

2. The second approach was to say that the general form of the spin state in xyz-space was given by
a (complex) linear combination αu|u⟩+ αd|d⟩. But, recall the definition of |l⟩ and |r⟩, the vectors
associated with the x-direction:

|r⟩ = 1√
2
|u⟩+ 1√

2
|d⟩; |l⟩ = 1√

2
|u⟩ − 1√

2
|d⟩

They didn’t involved complex numbers. We started to need, and have proven in exercise L02E03
that this was mandatory once we had enough constraints to cover the three spatial directions (i.e.,
when dealing with |i⟩ and |o⟩, after having already established the two other pairs of orthogonal
vectors).

That’s to say, we don’t need complex numbers when we only have two directions, so actually, the
general form of a spin in a plane is a real linear combination, which cuts down the number of

2There definitely is one, see for instance https://www.wolframalpha.com/input?i=diagonalize+%7B%7Bcos+x%2C+sin+

x%7D%2C%7Bsin+x%2C-cos+x%7D%7D
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degrees of freedom to 2.

Normalization adds yet another constraint, which cuts us down to a single degree of freedom. But,
shouldn’t the phase ambiguity brings us to . . . zero degree of freedom? What are we missing?

Well, the idea of phase ambiguity was that we could multiply the vectors by a exp(iθ) = cosθ+i sin θ,
for θ ∈ R. But we saw that we actually don’t need complex numbers when we’re in a 2D-plane,
which means sin θ = 0, and thus forces cos θ = 1, so the phase ambiguity doesn’t impact the
number of degrees of freedom;

3. Here’s a third argument that we’ll re-use in the next exercise3. Consider as a first guess an
eigenvector of the form (

z1
z2

)
; (z1, z2) ∈ C2

We can put both complex numbers in exponential form:(
r1 exp(iϕ1)
r2 exp(iϕ2

)
= exp(iϕ1)

(
r1

r2 exp(i(ϕ2 − ϕ1))

)
; (r1, r2, ϕ1, ϕ2) ∈ R4

We can then ignore the general phase factor exp(iϕ1), e.g. choose ϕ1 = 0. Furthermore, we’ll want
the (eigen)vector to be normalized (remember, the eigenvector associated to the eigenvalues of of
a Hermitian operator make an orthonormal basis), i.e.:

|r1|2 + |r2 exp(iϕ2)|2 = 1 ⇔ |r1|2 + |r2|2 = 1

But we’re then losing a degree of freedom, meaning, r1 and r2 are not independent from each
other: we can express them both in term of a single parameter, as long as the previous equation
is satisfied. We can choose, as it’ll make computation easier, r1 = cosα, r2 = sinα, with α ∈ R.
Which brings us to: (

cosα
exp(iϕ2) sinα

)
If ϕ2 varies, then our eigenvector isn’t restricted to a plane. But, because our eigenvector will be
a eigenvector of a Hermitian matrix, we know by the real spectral theorem4 that it must be a (an
orthonormal basis) vector of the xz-plane. So we can choose ϕ2 = 0 to restrict it to a plane.

Note that the form of this vector is naturally normalized (cos2 α + sin2 α = 1). Recall that it must be
normalized because this column vector actually corresponds to:(

cosα
sinα

)
= cosα

(
1
0

)
+ sinα

(
0
1

)
= cosα|u⟩+ sinα|d⟩

And the square of the magnitude of cosα encodes the probability for the measured value to correspond
to |u⟩ while the square of the magnitude of sinα encodes the probability of the system to be measured
in state |d⟩, and both states are orthogonal: the total probability must be 1.

Alright, let’s get to actually finding the eigenvectors associated to our eigenvalues. We can use the
same trick as in the previous exercise L03E02.pdf: because of the diagonalization process, we have the
following relation:

σn = PDP−1 ⇔ σnP = PD(PP−1︸ ︷︷ ︸
:=I2

) = PD = P

(
1 0
0 −1

)

⇔
(
cos θ sin θ
sin θ − cos θ

)
︸ ︷︷ ︸

=σn

(
cosα cosβ
sinα sinβ

)
︸ ︷︷ ︸

=P

=

(
cosα cosβ
sinα sinβ

)(
1 0
0 −1

)
=

(
cosα − cosβ
cosα − sinβ

)

Where the columns of P are the eigenvectors associated to the eigenvalues 1 and −1. Both have the
same ”form”, as previously explained. We could have used the same approach as in the book (see the

3Source: https://physics.stackexchange.com/a/720025
4L03E01.pdf
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previous exercise), but you’ll get with the same (kind?) of system in the end. Let’s perform the matrix
multiplication on the left and extract two equations from the four we can get by identifying the matrix
components: (

cos θ cosα+ sin θ sinα cos θ cosβ + sin θ sinβ
sin θ cosα− cos θ sinα sin θ cosβ − cos θ sinβ

)
=

(
cosα − cosβ
cosα − sinβ

)

⇔

{
cos θ cosα+ sin θ sinα = cosα

cos θ cosβ + sin θ sinβ = − cosβ

Remark 2. Strictly speaking, we don’t really know if this is equivalent so far, as we’re just extracting
two equations from potentially four distinct equations. For correctness’ sake, we could (I won’t out of
laziness) verify that the solution we find for those two equations also solve the two other remaining
equations.

The following trigonometric identities5:

cos θ cosα =
1

2
(cos(θ − α) + cos(θ + α)); sin θ sinα =

1

2
(cos(θ − α)− cos(θ + α))

cos(α− π) = − cosα

Allows us to rewrite the previous system as

⇔


1
2

((
cos(θ − α) + cos(θ + α)

)
+
(
cos(θ − α)− cos(θ + α)

))
= cosα

1
2

((
cos(θ − β) + cos(θ + β)

)
+
(
cos(θ − β)− cos(θ + β)

))
= cos(β − π)

⇔

{
cos(θ − α) = cosα

cos(θ − β) = cos(β − π)

And with the following identities:

cos(α+
π

2
) = − sinα; sin(α+

π

2
) = cosα

We reach:

⇒

{
θ − α = α

θ − β = β − π
⇒

{
α = θ

2

β = 1
2 (θ + π)

⇒


|+ 1⟩ =

(
cosα

sinα

)
=

(
cos(θ/2)

sin(θ/2)

)

| − 1⟩ =

(
cosβ

sinβ

)
=

(
cos(θ/2 + π/2)

sin(θ/2 + π/2)

)
=

(
− sin(θ/2)

cos(θ/2)

)

5Look around for the proofs if needed; formulas can be found on Wikipedia
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