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Exercise 1. Let nz = cos θ, nx = sin θ cosϕ and ny = sin θ sinϕ. Angles θ and ϕ are defined according
to the usual conventions for spherical coordinates (Fig. 3.2). Compute the eigenvalues and eigenvectors
for the matrix of Eq. 3.23.

Let’s recall Eq. 3.23, which is general form of the spin 3-vector operator:

σn =

(
nz (nx − iny)

(nx + iny) −nz

)
=

(
cos θ (sin θ cosϕ− i(sin θ sinϕ))

(sin θ cosϕ+ i(sin θ sinϕ)) − cos θ

)
Observe (e.g. from the trigonometric circle) that:

cos θ = cos(−θ); sin θ = − sin(−θ)

Hence:
exp(−iθ) := cos(−θ) + i sin(−θ) = cos θ − i sin θ

And we can simplify our previous expression of σn to:

σn =

(
cos θ exp(−iϕ) sin θ

exp(iϕ) sin θ − cos θ

)
Note that as we’re now in the general case, we indeed have two degrees of freedom, encoded by the two
angles θ and ϕ; the why has been explicited in subsection 2.5.

We’re still confronted to a spin operator: we expect the eigenvalues to be +1 and −11. But let’s check
this first: an eigenvector |λ⟩ associated to an eigenvalue λ must obey:

σn|λ⟩ = λ|λ⟩

⇔ σn|λ⟩ − λ|λ⟩ = 0 ⇔ (σn − I2λ)|λ⟩ = 0

But eigenvectors are non-zero, hence, again with 02 being the 2× 2 zero matrix:

⇔ σn − I2λ = 02

1Remember from the real spectral theorem, or as the authors call it, the fundamental theorem, that because we have a
Hermitian matrix, we know it’s diagonalizable, that its eigenvalues are real, and that the corresponding eigenvectors form
a orthogonal basis
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And so this matrix σn − I2λ cannot be invertible2. This translates to a condition on the determinant:

det(σn − I2λ) = 0 ⇔
∣∣∣∣ cos θ − λ exp(−iϕ) sin θ
exp(iϕ) sin θ − cos θ − λ

∣∣∣∣ = 0

⇔ − (cos θ − λ)(cos θ + λ)− exp(iϕ) exp(−iϕ)︸ ︷︷ ︸
=1

sin2 θ = 0

⇔ − (cos2 θ − λ2)− sin2 θ = 0

⇔ λ2 − (sin2 θ + cos2 θ︸ ︷︷ ︸
=1

) = 0

⇔ λ2 = 1

⇔ λ =

{
+1

−1

The remaining difficulty is then in finding the eigenvectors. We can use the following argument3.

Consider as a first guess an eigenvector of the form:(
z1
z2

)
; (z1, z2) ∈ C2

We can put both complex numbers in exponential form:(
r1 exp(iϕ1)
r2 exp(iϕ2

)
= exp(iϕ1)

(
r1

r2 exp(i(ϕ2 − ϕ1))

)
; (r1, r2, ϕ1, ϕ2) ∈ R4

We can then ignore the general phase factor exp(iϕ1), e.g. set ϕ1 = 0. Furthermore, we want the vector
to be normalized (this is an eigenvector associated to the eigenvalue of a Hermitian operator: it must be
normalized per the real spectral theorem), i.e.

|r1|2 + |r2 exp(iϕ2)|2 = 1 ⇔ |r1|2 + |r2|2 = 1

But we’re then losing a degree of freedom, meaning, r1 and r2 are not independent from each other: we
can express them both in term of a single parameter, as long as the previous equation is satisfied. We
can choose, as it’ll make computation easier, r1 = cosα, r2 = sinα, with α ∈ R. Finally, let’s rename
ϕ2 = ϕα

4, which brings us to consider eigenvectors of the form:(
cosα

exp(iϕα) sinα

)
As for the previous exercise, we can use two different parameter α and β for each eigenvector. Again,
because of the diagonalization process, we have the following relation

σn = PDP−1 ⇔ σnP = PD(PP−1︸ ︷︷ ︸
:=I2

) = PD = P

(
1 0
0 −1

)

But the columns of P must contain our eigenvectors, so this is equivalent to:(
cos θ exp(−iϕ) sin θ

exp(iϕ) sin θ − cos θ

)
︸ ︷︷ ︸

=σn

(
cosα cosβ

exp(iϕα) sinα exp(iϕβ) sinβ

)
︸ ︷︷ ︸

=P

=

(
cosα cosβ

exp(iϕα) sinα exp(iϕβ) sinβ

)(
1 0
0 −1

)

=

(
cosα − cosβ

exp(iϕα) cosα − exp(iϕβ) sinβ

)
2Again for otherwise, as recalled in L03E03, multiply both sides of the equation by its inverse, get an identity on the

left-hand-side and still the zero matrix on the right-hand-side
3https://physics.stackexchange.com/a/720025
4Note that I’m not yet identifying ϕα with ϕ; this will come naturally later on
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Let’s perform the matrix multiplication on the left:(
cos θ cosα+ exp(i(ϕα − ϕ)) sin θ sinα cos θ cosβ + exp(i(ϕβ − ϕ)) sin θ sinβ
exp(iϕ) sin θ cosα− exp(iϕα) cos θ sinα exp(iϕ) sin θ cosβ − exp(iϕβ) cos θ sinβ

)
=

(
cosα − cosβ

exp(iϕα) cosα − exp(iϕβ) sinβ

)
From which we can extract the following system of equations:{

cos θ cosα+ exp(i(ϕα − ϕ)) sin θ sinα = cosα

cos θ cosβ + exp(i(ϕβ − ϕ)) sin θ sinβ = − cosβ

Remark 1. As for the previous exercise, I leave it to you to check that the solution we’ll find for this
system also solve the two other omitted equations.

It’s tempting to set ϕ = ϕα = ϕβ , but can we do so? Well, we know the two eigenvectors will have to be
orthogonal: this adds an additional constraint, which decrease our degrees of freedom by one, meaning
there’s one superfluous variable in {α, β, ϕα, ϕβ}. We can choose to implement this constraint by setting
ϕα = ϕβ .

From there, we can indeed set ϕα = ϕβ = ϕ, as this allows us to solve the equation for α and β more
easily:

⇔

{
cos θ cosα+ sin θ sinα = cosα

sin θ cosβ − cos θ sinβ = − cosβ

Which is exactly the same system we had for the previous exercise, which was solved by:{
α = θ/2

β = 1
2 (θ + π)

With the same trigonometric identities as for the previous exercise:

cos(α+
π

2
) = − sinα; sin(α+

π

2
) = cosα

We reach the following eigenvectors
|+ 1⟩ =

(
cosα

exp(iϕ) sinα

)
=

(
cos(θ/2)

exp(iϕ) sin(θ/2)

)

| − 1⟩ =

(
cosβ

exp(iϕ) sinβ

)
=

(
− sin(θ/2)

exp(iϕ) cos(θ/2)

)

Alright, let’s make the same verifications the authors did in the book after the previous exercise. First,
we get the expected eigenvalues +1, −1, which are the only two eigenvalues we have for a spin operator.

Then the two eigenvectors must be orthogonal, indeed (I only do it one way; the other is trivially similar):

⟨+1|−1⟩ =
(
cos(θ/2) exp(−iϕ) sin(θ/2)

)( − sin(θ/2)
exp(iϕ) cos(θ/2)

)
= − cos(θ/2) sin(θ/2) + exp(−iϕ+ iϕ) cos(θ/2) sin(θ/2) = 0

Finally, if we prepare a spin along the z-axis in the up state |u⟩, then rotate our apparatus to lie along
the n̂ axis, which is not restricted to the xz-plane anymore, we have according to the fourth principle5:

P (+1) = | ⟨u|+1⟩ |2 = cos2(θ/2)

P (−1) = | ⟨u|−1⟩ |2 = sin2(θ/2)

Which then lead to the exact same computation regarding the expected value for the measurement:

⟨σn⟩ =
∑
i

λiP (λi) = (+1) cos2(θ/2) + (−1) sin2(θ/2) = cos θ

Note also that P (+1) + P (−1) = 1.
5Don’t hesitate to get back to the definition of |u⟩ and that of the inner-product if this isn’t clear enough.
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