The Theoretical Minimum
 Quantum Mechanics - Solutions

L03E05

Last version: tales.mbivert.com/on-the-theoretical-minimum-solutions/ or github.com/mbivert/ttm

M. Bivert

May 10, 2023

Exercise 1. Suppose that a spin is prepared so that $\sigma_{m}=+1$. The apparatus is then rotated to the \hat{n} direction and σ_{n} is measured. What is the probability that the result is +1 ? Note that $\sigma_{m}=\sigma \cdot \hat{m}$, using the same convention we used for σ_{n}.

There are essentially two ways of solving the issue.
The first one, and the simplest, is to observe that if we consider \hat{n} in a frame of reference where \hat{m} acts as our z-axis, then we're essentially in the case of our previous exercise: we've prepared a spin in the "up" state (now corresponding to a state where $\sigma_{m}=+1$), we've moved our apparatus away from \hat{m} by a a certain angle θ^{1}, and we know from the previous exercise that the probability of measuring a +1 after aligning our apparatus with the \hat{n} axis is now

$$
P(+1)=\cos ^{2} \frac{\theta}{2}
$$

Which is exactly what we wanted to show (the answer is given in the book by the authors, after the exercise).

I'll only draft the second approach, as I expect it to be more time consuming ${ }^{2}$. The idea is not to rely on the previous observation, and to consider that we've prepared to spin so that $\sigma_{m}=+1$, which means the state of the system is the eigenvector corresponding to this eigenvalue, which we know from the previous exercise, with θ_{m} the angle between the z-axis and \hat{m}, and ϕ_{m} the angle between the x-axis and the projection of \hat{m} on the $x y$-plane:

$$
\left|+1_{m}\right\rangle=\binom{\cos \left(\theta_{m} / 2\right)}{\exp \left(i \phi_{m}\right) \sin \left(\theta_{m} / 2\right)}
$$

If we then align the apparatus in the \hat{n} direction, with corresponding θ_{n} / ϕ_{n} angles, which are relative to the z-axis, not \hat{m}, we now, by the same result, that the eigenvector corresponding to the probability of measuring a +1 in the \hat{n} direction is:

$$
\left|+1_{n}\right\rangle=\binom{\cos \left(\theta_{n} / 2\right)}{\exp \left(i \phi_{n}\right) \sin \left(\theta_{n} / 2\right)}
$$

Then, the probability to measure $\mathrm{a}+1$ is given, again by using the fourth principle:

$$
P(+1)=\left|\left\langle+1_{m} \mid+1_{n}\right\rangle\right|^{2}
$$

[^0]We would then need to develop the inner-product between the two state vectors, and find a way to identify it with the half-angle between \hat{n} and \hat{m}.

All the difficulty is then in expressing this half-angle in terms of our four angles $\left(\theta_{m}, \phi_{m}, \theta_{n}, \phi_{n}\right)$. I suppose we get some insightful elements by cleverly:

- Expressing \hat{m} and \hat{n} both in rectangular coordinates;
- Observing that by the regular 3 -vector dot product, $\hat{n} \cdot \hat{m}=\|\hat{n}\|\|\hat{m}\| \cos \theta_{m n}=\cos \theta_{m n}$ (where $\theta_{m n}$ is the angle between \hat{m} and \hat{n}
- Observing that $\cos \frac{\theta_{m n}}{2}=\frac{1}{\sqrt{2}} \hat{n} \cdot(\hat{n}+\hat{m})$ (again from the regular 3-vector dot product, as $\hat{n}+\hat{m}$ will be a (non-unitary) vector bisecting $\theta_{m n}{ }^{3}$)

[^1]
[^0]: ${ }^{1} \theta$ really is the angle between \hat{m} and \hat{n}, not some angle between \hat{n} and the "real" z-axis
 ${ }^{2}$ And hopefully, valid...

[^1]: 3^{3} https://math.stackexchange.com/a/2285989 the parallelogram involved in the sum of two vectors in a rhombus.

