The Theoretical Minimum
 Quantum Mechanics - Solutions

L04E01
Last version: tales.mbivert.com/on-the-theoretical-minimum-solutions/ or github.com/mbivert/ttm
M. Bivert

May 10, 2023

Exercise 1. Prove that if U is unitary, and if $|A\rangle$ and $|B\rangle$ are any two state-vectors, then the inner product of $U|A\rangle$ and $U|B\rangle$ is the same as the inner product of $|A\rangle$ and $|B\rangle$. One could call this the conservation of overlaps. It expresses the fact that the logical relation between states is preserved with time.

The inner-product has been defined as the product of a bra and a ket. So the inner-product of $U|A\rangle$ and $U|B\rangle$ is the product of e.g. the bra associated to $U|A\rangle$ and $U|B\rangle$. But in section 3.1.5 of the book, we've established that:

$$
|C\rangle=M|D\rangle \Leftrightarrow\langle C|=\langle D| M^{\dagger}
$$

Hence the inner-product we're looking for is:

$$
\langle A| \underbrace{U^{\dagger} U}_{I}|B\rangle=\langle A \mid B\rangle
$$

Remark 1. The terminology is a bit confusing: we're talking about the inner-product of two kets, while we've defined the inner-product to be an operation between a bra and a ket. Overall, the bra-ket notation makes things a little more complicated than just having to deal with an inner-product space.

