The Theoretical Minimum Quantum Mechanics - Solutions ## L04E02 $Last\ version:\ tales.mbivert.com/on-the-theoretical-minimum-solutions/\ or\ github.com/mbivert/ttm$ ## M. Bivert May 10, 2023 **Exercise 1.** Prove that if M and L are both Hermitian, i[M,L] is also Hermitian. Note that the i is important. The commutator is, by itself, not Hermitian. $$\begin{split} (i[M,L])^\dagger &= (i(ML-LM))^\dagger \\ &= (iML-iLM)^\dagger \\ &= \left((iML-iLM)^T\right)^* & (\dagger\text{'s definition}) \\ &= \left((iML)^T - (iLM)^T\right)^* & ((A+B)^T = A^T + B^T) \\ &= \left(iL^TM^T - iM^TL^T\right)^* & ((AB)^T = B^TA^T) \\ &= \left(-i(L^TM^T)^* + i(M^TL^T)^*\right) & ((zt)^* = z^*t^*; (z+t)^* = z^* + t^*)) \\ &= i\left(M^\dagger L^\dagger - L^\dagger M^\dagger\right) & (\dagger\text{'s definition}) \\ &= i\left(ML - LM\right) & (L = L^\dagger; M = M^\dagger) \\ &= i[M,L] & \Box \end{split}$$