The Theoretical Minimum Quantum Mechanics - Solutions

L04E02
Last version: tales.mbivert.com/on-the-theoretical-minimum-solutions/ or github.com/mbivert/ttm
M. Bivert

May 10, 2023

Exercise 1. Prove that if M and L are both Hermitian, $i[M, L]$ is also Hermitian. Note that the i is important. The commutator is, by itself, not Hermitian.

$$
\begin{aligned}
(i[M, L])^{\dagger} & =(i(M L-L M))^{\dagger} & & \\
& =(i M L-i L M)^{\dagger} & & \\
& =\left((i M L-i L M)^{T}\right)^{*} & & \left((A+B)^{T}=A^{T}+B^{T}\right) \\
& =\left((i M L)^{T}-(i L M)^{T}\right)^{*} & & \left((A B)^{T}=B^{T} A^{T}\right) \\
& =\left(i L^{T} M^{T}-i M^{T} L^{T}\right)^{*} & & \left.\left((z t)^{*}=z^{*} t^{*} ;(z+t) *=z^{*}+t^{*}\right)\right) \\
& =\left(-i\left(L^{T} M^{T}\right)^{*}+i\left(M^{T} L^{T}\right)^{*}\right) & & (L \text { 's definition }) \\
& =i\left(M^{\dagger} L^{\dagger}-L^{\dagger} M^{\dagger}\right) & & \square
\end{aligned}
$$

