The Theoretical Minimum
 Quantum Mechanics - Solutions

L04E05

Last version: tales.mbivert.com/on-the-theoretical-minimum-solutions/ or github.com/mbivert/ttm

M. Bivert

May 10, 2023

Exercise 1. Take any unit 3-vector \boldsymbol{n} and form the operator

$$
H=\frac{\hbar \omega}{2} \sigma \cdot \boldsymbol{n}
$$

Find the energy eigenvalues and eigenvectors by solving the time-independent Schrödinger equation. Recall that Eq. 3.23 gives $\sigma \cdot \boldsymbol{n}$ in component form.
Let's recall Eq. 3.23, which is general form of the spin 3-vector operator:

$$
\sigma_{n}=\sigma \cdot \boldsymbol{n}=\left(\begin{array}{cc}
n_{z} & \left(n_{x}-i n_{y}\right) \\
\left(n_{x}+i n_{y}\right) & -n_{z}
\end{array}\right)
$$

And the time-independent Schrödinger equation ${ }^{1}$

$$
H\left|E_{j}\right\rangle=E_{j}\left|E_{j}\right\rangle
$$

In an earlier exercise (L03E04), we actually diagonalized σ_{n} : this gave us two eigenvalues +1 and -1 , and two eigenvectors:

$$
|+1\rangle=\binom{\cos (\theta / 2)}{\exp (i \phi) \sin (\theta / 2)} ; \quad|-1\rangle=\binom{-\sin (\theta / 2)}{\exp (i \phi) \cos (\theta / 2)}
$$

Where \boldsymbol{n} was a regular unitary 3 -vector expressed in spherical coordinates:

$$
\boldsymbol{n}=\left(\begin{array}{c}
\sin \theta \cos \phi \\
\sin \theta \sin \phi \\
\cos \theta
\end{array}\right)
$$

Let's see how we can leverage this previous work to our advantage: such an \boldsymbol{n} vector still fit our purpose here. Furthermore, we know that the eigenvalues of σ_{n} are the only solutions to:

$$
\sigma_{n}\left|F_{j}\right\rangle=F_{j}\left|F_{j}\right\rangle
$$

But if we multiply both sides of this equation by $\frac{\hbar \omega}{2}$, we get exactly the equation we want to solve:

$$
\underbrace{\frac{\hbar \omega}{2} \sigma_{n}}_{H}\left|F_{j}\right\rangle=\left(\frac{\hbar \omega}{2} F_{j}\right)\left|F_{j}\right\rangle
$$

Multiplying the equation by a constant doesn't change the eigenvectors: they still are the only solutions, but the associated eigenvalues are now different:

$$
\lambda_{1}=\frac{\hbar \omega}{2} ; \quad\left|\lambda_{1}\right\rangle=\binom{\cos (\theta / 2)}{\exp (i \phi) \sin (\theta / 2)}
$$

$$
\lambda_{2}=-\frac{\hbar \omega}{2} ; \quad\left|\lambda_{2}\right\rangle=\binom{-\sin (\theta / 2)}{\exp (i \phi) \cos (\theta / 2)}
$$

[^0]
[^0]: ${ }^{1}$ That's quite a fancy name for describing the eigenvectors of an operator, by comparison with the "iconic" Schrödinger equation...

