The Theoretical Minimum Quantum Mechanics - Solutions L04E05

Last version: tales.mbivert.com/on-the-theoretical-minimum-solutions/ or github.com/mbivert/ttm

M. Bivert

May 10, 2023

Exercise 1. Take any unit 3-vector \boldsymbol{n} and form the operator

$$H = \frac{\hbar\omega}{2} \boldsymbol{\sigma} \cdot \boldsymbol{n}$$

Find the energy eigenvalues and eigenvectors by solving the time-independent Schrödinger equation. Recall that Eq. 3.23 gives $\sigma \cdot \mathbf{n}$ in component form.

Let's recall Eq. 3.23, which is general form of the spin 3-vector operator:

$$\sigma_n = \sigma \cdot \boldsymbol{n} = \begin{pmatrix} n_z & (n_x - in_y) \\ (n_x + in_y) & -n_z \end{pmatrix}$$

And the time-independent Schrödinger equation¹:

$$H|E_j\rangle = E_j|E_j\rangle$$

In an earlier exercise (L03E04), we actually diagonalized σ_n : this gave us two eigenvalues +1 and -1, and two eigenvectors:

$$|+1\rangle = \begin{pmatrix} \cos(\theta/2) \\ \exp(i\phi)\sin(\theta/2) \end{pmatrix}; \qquad |-1\rangle = \begin{pmatrix} -\sin(\theta/2) \\ \exp(i\phi)\cos(\theta/2) \end{pmatrix}$$

Where n was a regular unitary 3-vector expressed in spherical coordinates:

$$\boldsymbol{n} = \begin{pmatrix} \sin\theta\cos\phi\\ \sin\theta\sin\phi\\ \cos\theta \end{pmatrix}$$

Let's see how we can leverage this previous work to our advantage: such an n vector still fit our purpose here. Furthermore, we know that the eigenvalues of σ_n are the only solutions to:

$$\sigma_n |F_j\rangle = F_j |F_j\rangle$$

But if we multiply both sides of this equation by $\frac{\hbar\omega}{2}$, we get exactly the equation we want to solve:

$$\underbrace{\frac{\hbar\omega}{2}\sigma_n}_{H}\left|F_j\right\rangle = \left(\frac{\hbar\omega}{2}F_j\right)\left|F_j\right\rangle$$

Multiplying the equation by a constant doesn't change the eigenvectors: they still are the only solutions, but the associated eigenvalues are now different:

$$\lambda_1 = \frac{\hbar\omega}{2}; \qquad |\lambda_1\rangle = \begin{pmatrix} \cos(\theta/2)\\ \exp(i\phi)\sin(\theta/2) \end{pmatrix}$$
$$\lambda_2 = -\frac{\hbar\omega}{2}; \qquad |\lambda_2\rangle = \begin{pmatrix} -\sin(\theta/2)\\ \exp(i\phi)\cos(\theta/2) \end{pmatrix}$$

 $^{^{1}}$ That's quite a fancy name for describing the eigenvectors of an operator, by comparison with the "iconic" Schrödinger equation...