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Exercise 1. Carry out the Schrödinger Ket recipe for a single spin. The Hamiltonian is H =
ωℏ
2
σz and

the final observable is σx. The initial state is given as |u⟩ (the state in which σz = +1).

After time t, an experiment is done to measure σy. What are the possible outcomes and what are the
probabilities for those outcomes?

Congratulations! You have now solved a real quantum mechanics problem for an experiment that can
actually be carried out in the laboratory. Feel free to pat yourself on the back.

Remark 1. There’s a typo in the statement of this exercise: the final observable is said first to be σx

and then σy. The French version of the book uses σy for both, so that’s what I’ll do here.

1. Derive, look up, guess, borrow, or steal the Hamiltonian operator H ;
Well, let’s take it from the authors:

H =
ωℏ
2
σz =

ωℏ
2

(
1 0
0 −1

)
2. Prepare an initial state |Ψ(0)⟩;

Again, from the exercise statement, let’s prepare an up state:

|Ψ(0)⟩ = |u⟩ =
(
1
0

)
3. Find the eigenvalues and eigenvectors of H by solving the time-independent Schrödinger equation,

H|Ej⟩ = Ej |Ej⟩

I don’t recall us already diagonalizing σz before, so let’s do it, but I’ll be shorter than usual. The
eigenvalues are given by the non-invertibility condition of H − Iλ, as the solutions of

det(H − Iλ) = (
ωℏ
2

− λ)(λ− ωℏ
2
) = 0

Hence the two eigenvalues:

E1 =
ωℏ
2
; E2 = −ωℏ

2

From which we can derive the two eigenvectors:

ωℏ
2

(
1 0
0 −1

)
︸ ︷︷ ︸

H

|E1⟩ =
ωℏ
2
|E1⟩
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Assuming an eigenvector of a general form (a b)T yields the following system:

⇔

{
a = a

−b = b

So b = 0; furthermore, as |E1⟩ must be unitary (from the fundamental theorem/real spectral
theorem, we know the eigenvectors of a Hermitian operator, which H most definitely is, are unitary,
because the eigenvectors make an orthonormal basis), we must have a = ±1; let’s chose more or
less arbitrarily a = 1. Hence:

|E1⟩ =
(
1
0

)
Similarly for |E2⟩, assume a general form of (c d)T , this yields the following system:

⇔

{
c = −c

−d = −d

By a similar argument, as before we find:

|E2⟩ =
(
0
1

)
Remark 2. I’m not sure why we have an extra degree of freedom via the signs on the non-zero
component of the eigenvectors; I can’t think of an extra constraint.

4. Use the initial state-vector |Ψ(0)⟩, along with the eigenvectors |Ej⟩ from step 3, to calculate the
initial coefficients αj(0):

αj(0) = ⟨Ej |Ψ(0)⟩

That’s an elementary computation:

α1(0) = 1; α2(0) = 0

5. Rewrite |Ψ(0)⟩ in terms of the eigenvectors |Ej⟩ and the initial coefficients αj(0):

|Ψ(0)⟩ =
∑
j

αj(0)|Ej⟩

Again, quite elementary given the quantities involved:

|Ψ(0)⟩ = 1|E1⟩ = |u⟩ =
(
1
0

)
6. In the above equation, replace each αj(0) with αj(t) to capture its time-dependence. As a result,

|Ψ(0)⟩ becomes |Ψ(t)⟩:
|Ψ(t)⟩ =

∑
j

αj(t)|Ej⟩

Naturally:
|Ψ(t)⟩ = α1(t)|E1⟩+ α2(t)|E2⟩

7. Using Eq. 4.301, replace each αj(t) with αj(0) exp(− i
ℏEjt):

|Ψ(t)⟩ =
∑
j

αj(0) exp(−
i

ℏ
Ejt)|Ej⟩

Because α2(0) = 0, it only remains:

|Ψ(t)⟩ = exp(− i

ℏ
t)|u⟩

1This equation corresponds exactly to what this step describes
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OK, then the idea is that if we have an observable L, the probability to measure λ (where λ is then an
eigenvalue of L) is given by:

Pλ(t) = | ⟨λ|Ψ(t)⟩ |2

The authors are asking us to consider as an observable L = σy. Recall:

σy =

(
0 −i
i 0

)
This is a matrix corresponding to the spin observable following the y-axis: we must expect its eigenvalues
to be ±1 and its eigenvectors to be |i⟩ and |o⟩, but let’s compute them all anyway for practice:

det(σy − Iλ) = λ2 + i2 = 0 ⇔ λ = ±1

For the eigenvectors, again we can assume a general form and solve the corresponding system of equations:(
0 −i
i 0

)
︸ ︷︷ ︸

σy

(
a
b

)
= (+1)

(
a
b

)
⇔

{
−ib = a

ia = b

Both equations are actually equivalent (multiply the first one by i to get the second). We furthermore
have an additional constraint as the eigenvectors are supposed to be unitary, which yields:

|E1⟩ =
(
a
ia

)
and a2 + (ia)(−ia) = 1 ⇔ |E1⟩ =

(
1/
√
2

i/
√
2

)
= |i⟩

Similarly: (
0 −i
i 0

)
︸ ︷︷ ︸

σy

(
c
d

)
= (−1)

(
c
d

)
⇔

{
−id = −c

ic = −d

Again, the two equations are equivalent (multiply the first by −i to get the second one), but we have an
additional constraint, as the vector must be unitary. In the end, this yields:

|E2⟩ =
(

c
−ic

)
and c2 + (ic)(−ic) = 1 ⇔ |E1⟩ =

(
1/
√
2

−i/
√
2

)
= |o⟩

We may now apply our previous probability formula (Principle 4):

P+1(t) = | ⟨i|Ψ(t)⟩ |2 = | 1√
2
exp(− it

ℏ
)|2 =

1

2

And either because the sum of probabilities must be 1, or by explicit computation:

P−1(t) = | ⟨o|Ψ(t)⟩ |2 = | 1√
2
exp(− it

ℏ
)|2 =

1

2
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