The Theoretical Minimum
 Quantum Mechanics - Solutions

L04E06
Last version: tales.mbivert.com/on-the-theoretical-minimum-solutions/ or github.com/mbivert/ttm

M. Bivert

May 10, 2023

Exercise 1. Carry out the Schrödinger Ket recipe for a single spin. The Hamiltonian is $H=\frac{\omega \hbar}{2} \sigma_{z}$ and the final observable is σ_{x}. The initial state is given as $|u\rangle$ (the state in which $\sigma_{z}=+1$).

After time t, an experiment is done to measure σ_{y}. What are the possible outcomes and what are the probabilities for those outcomes?

Congratulations! You have now solved a real quantum mechanics problem for an experiment that can actually be carried out in the laboratory. Feel free to pat yourself on the back.

Remark 1. There's a typo in the statement of this exercise: the final observable is said first to be σ_{x} and then σ_{y}. The French version of the book uses σ_{y} for both, so that's what I'll do here.

1. Derive, look up, guess, borrow, or steal the Hamiltonian operator H;

Well, let's take it from the authors:

$$
H=\frac{\omega \hbar}{2} \sigma_{z}=\frac{\omega \hbar}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

2. Prepare an initial state $|\Psi(0)\rangle$;

Again, from the exercise statement, let's prepare an up state:

$$
|\Psi(0)\rangle=|u\rangle=\binom{1}{0}
$$

3. Find the eigenvalues and eigenvectors of H by solving the time-independent Schrödinger equation,

$$
H\left|E_{j}\right\rangle=E_{j}\left|E_{j}\right\rangle
$$

I don't recall us already diagonalizing σ_{z} before, so let's do it, but I'll be shorter than usual. The eigenvalues are given by the non-invertibility condition of $H-I \lambda$, as the solutions of

$$
\operatorname{det}(H-I \lambda)=\left(\frac{\omega \hbar}{2}-\lambda\right)\left(\lambda-\frac{\omega \hbar}{2}\right)=0
$$

Hence the two eigenvalues:

$$
E_{1}=\frac{\omega \hbar}{2} ; \quad E_{2}=-\frac{\omega \hbar}{2}
$$

From which we can derive the two eigenvectors:

$$
\underbrace{\frac{\omega \hbar}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)}_{H}\left|E_{1}\right\rangle=\frac{\omega \hbar}{2}\left|E_{1}\right\rangle
$$

Assuming an eigenvector of a general form $(a b)^{T}$ yields the following system:

$$
\Leftrightarrow\left\{\begin{array}{l}
a=a \\
-b=b
\end{array}\right.
$$

So $b=0$; furthermore, as $\left|E_{1}\right\rangle$ must be unitary (from the fundamental theorem/real spectral theorem, we know the eigenvectors of a Hermitian operator, which H most definitely is, are unitary, because the eigenvectors make an orthonormal basis), we must have $a= \pm 1$; let's chose more or less arbitrarily $a=1$. Hence:

$$
\left|E_{1}\right\rangle=\binom{1}{0}
$$

Similarly for $\left|E_{2}\right\rangle$, assume a general form of $(c d)^{T}$, this yields the following system:

$$
\Leftrightarrow\left\{\begin{array}{l}
c=-c \\
-d=-d
\end{array}\right.
$$

By a similar argument, as before we find:

$$
\left|E_{2}\right\rangle=\binom{0}{1}
$$

Remark 2. I'm not sure why we have an extra degree of freedom via the signs on the non-zero component of the eigenvectors; I can't think of an extra constraint.
4. Use the initial state-vector $|\Psi(0)\rangle$, along with the eigenvectors $\left|E_{j}\right\rangle$ from step 3, to calculate the initial coefficients $\alpha_{j}(0)$:

$$
\alpha_{j}(0)=\left\langle E_{j} \mid \Psi(0)\right\rangle
$$

That's an elementary computation:

$$
\alpha_{1}(0)=1 ; \quad \alpha_{2}(0)=0
$$

5. Rewrite $|\Psi(0)\rangle$ in terms of the eigenvectors $\left|E_{j}\right\rangle$ and the initial coefficients $\alpha_{j}(0)$:

$$
|\Psi(0)\rangle=\sum_{j} \alpha_{j}(0)\left|E_{j}\right\rangle
$$

Again, quite elementary given the quantities involved:

$$
|\Psi(0)\rangle=1\left|E_{1}\right\rangle=|u\rangle=\binom{1}{0}
$$

6. In the above equation, replace each $\alpha_{j}(0)$ with $\alpha_{j}(t)$ to capture its time-dependence. As a result, $|\Psi(0)\rangle$ becomes $|\Psi(t)\rangle$:

$$
|\Psi(t)\rangle=\sum_{j} \alpha_{j}(t)\left|E_{j}\right\rangle
$$

Naturally:

$$
|\Psi(t)\rangle=\alpha_{1}(t)\left|E_{1}\right\rangle+\alpha_{2}(t)\left|E_{2}\right\rangle
$$

7. Using Eq. 4.3q1 , replace each $\alpha_{j}(t)$ with $\alpha_{j}(0) \exp \left(-\frac{i}{\hbar} E_{j} t\right)$:

$$
|\Psi(t)\rangle=\sum_{j} \alpha_{j}(0) \exp \left(-\frac{i}{\hbar} E_{j} t\right)\left|E_{j}\right\rangle
$$

Because $\alpha_{2}(0)=0$, it only remains:

$$
|\Psi(t)\rangle=\exp \left(-\frac{i}{\hbar} t\right)|u\rangle
$$

[^0]OK, then the idea is that if we have an observable L, the probability to measure λ (where λ is then an eigenvalue of L) is given by:

$$
P_{\lambda}(t)=|\langle\lambda \mid \Psi(t)\rangle|^{2}
$$

The authors are asking us to consider as an observable $L=\sigma_{y}$. Recall:

$$
\sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)
$$

This is a matrix corresponding to the spin observable following the y-axis: we must expect its eigenvalues to be ± 1 and its eigenvectors to be $|i\rangle$ and $|o\rangle$, but let's compute them all anyway for practice:

$$
\operatorname{det}\left(\sigma_{y}-I \lambda\right)=\lambda^{2}+i^{2}=0 \Leftrightarrow \lambda= \pm 1
$$

For the eigenvectors, again we can assume a general form and solve the corresponding system of equations:

$$
\underbrace{\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)}_{\sigma_{y}}\binom{a}{b}=(+1)\binom{a}{b} \Leftrightarrow\left\{\begin{array}{l}
-i b=a \\
i a=b
\end{array}\right.
$$

Both equations are actually equivalent (multiply the first one by i to get the second). We furthermore have an additional constraint as the eigenvectors are supposed to be unitary, which yields:

$$
\left|E_{1}\right\rangle=\binom{a}{i a} \text { and } a^{2}+(i a)(-i a)=1 \Leftrightarrow\left|E_{1}\right\rangle=\binom{1 / \sqrt{2}}{i / \sqrt{2}}=|i\rangle
$$

Similarly:

$$
\underbrace{\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)}_{\sigma_{y}}\binom{c}{d}=(-1)\binom{c}{d} \Leftrightarrow\left\{\begin{array}{l}
-i d=-c \\
i c=-d
\end{array}\right.
$$

Again, the two equations are equivalent (multiply the first by $-i$ to get the second one), but we have an additional constraint, as the vector must be unitary. In the end, this yields:

$$
\left|E_{2}\right\rangle=\binom{c}{-i c} \text { and } c^{2}+(i c)(-i c)=1 \Leftrightarrow\left|E_{1}\right\rangle=\binom{1 / \sqrt{2}}{-i / \sqrt{2}}=|o\rangle
$$

We may now apply our previous probability formula (Principle 4):

$$
P_{+1}(t)=|\langle i \mid \Psi(t)\rangle|^{2}=\left|\frac{1}{\sqrt{2}} \exp \left(-\frac{i t}{\hbar}\right)\right|^{2}=\frac{1}{2}
$$

And either because the sum of probabilities must be 1 , or by explicit computation:

$$
P_{-1}(t)=|\langle o \mid \Psi(t)\rangle|^{2}=\left|\frac{1}{\sqrt{2}} \exp \left(-\frac{i t}{\hbar}\right)\right|^{2}=\frac{1}{2}
$$

[^0]: ${ }^{1}$ This equation corresponds exactly to what this step describes

