The Theoretical Minimum
 Quantum Mechanics - Solutions

L05E01
Last version: tales.mbivert.com/on-the-theoretical-minimum-solutions/ or github.com/mbivert/ttm
M. Bivert

May 10, 2023

Exercise 1. Verify this claim.
The claim being that any 2×2 Hermitian matrix can be represented as a linear combination of:

$$
I=\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right) ; \quad \sigma_{x}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) ; \quad \sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) ; \quad \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

The general form of a 2×2 Hermitian matrix is:

$$
\left(\forall\left(r, r^{\prime}, w\right) \in \mathbb{R}^{2} \times \mathbb{C}\right), \quad\left(\begin{array}{cc}
r & w \\
w^{*} & r^{\prime}
\end{array}\right)
$$

Recall indeed that because for a Hermitian matrix L we have $L=L^{\dagger}:=\left(L^{*}\right)^{T}$, hence the diagonal elements must be real.

Compare then with the general form for a linear combination of the four matrices above:

$$
\left(\forall(a, b, c, d) \in \mathbb{R}^{4}\right), \quad a \sigma_{x}+b \sigma_{y}+c \sigma_{z}+d I=\left(\begin{array}{cc}
c+d & a-i b \\
a+i b & c-d
\end{array}\right)
$$

Clearly we can identify $w \in \mathbb{C}$ with $a-i b$: this is a general form for a complex number, and this naturally identifies w^{*} with $a+i b$, as expected.

Regarding the remaining parameters, we have on one side two real parameters, and on the other side, two non-equivalent equations involving two parameters, meaning, two degrees of freedom on both sides. So there's room to identify r with $c+d$ and r^{\prime} with $c-d$. More precisely, given two arbitrary $\left(r, r^{\prime}\right) \in \mathbb{R}^{2}$, we can always find $(c, d) \in \mathbb{R}^{2}$ such that $r=c+d$ and $r^{\prime}=c-d$:

$$
\left\{\begin{array} { l }
{ r = c + d } \\
{ r ^ { \prime } = c - d }
\end{array} \Leftrightarrow \left\{\begin{array} { l }
{ c = r - d } \\
{ d = c - r ^ { \prime } }
\end{array} \Leftrightarrow \left\{\begin{array} { l }
{ c = r - (c - r ^ { \prime }) } \\
{ d = (r - d) - r ^ { \prime } }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
c=\frac{r+r^{\prime}}{2} \\
d=\frac{r-r^{\prime}}{2}
\end{array}\right.\right.\right.\right.
$$

Remark 1. Note that (real) linear combinations of those 4 matrices are isomorphic to $\mathbb{1}$.

[^0]
[^0]: ${ }^{1}$ https://en.wikipedia.org/wiki/Quaternion

