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Exercise 1. 1) Show that ∆A2 =
〈
Ā2

〉
and ∆B2 =

〈
B̄2

〉
2) Show that [Ā, B̄] = [A,B]

3) Using these relations, show that

∆A ∆B ≥ 1

2
⟨Ψ|[A,B]|Ψ⟩

OK, let’s as usual recall the context: A and B are two observables. We defined the expectation value of
an observable C with eigenvalues labelled as c to be:

⟨C⟩ := ⟨Ψ|C|Ψ⟩ =
∑
c

cP (c)

We construct from C a new observable C̄:

C̄ := C − ⟨C⟩ I

Where the identity I is sometimes implicit. The eigenvalues of C̄ are denoted c̄ and can be expressed in
terms of C’s eigenvalues, denoted c:

c̄ = c− ⟨C⟩

From there, we defined the standard deviation, or the square of the uncertainty of C, assuming a ”well-
behaved” probability distribution P , by:

(∆C)2 :=
∑
c

c̄2P (c)

Let’s first quickly prove that c̄ = c − ⟨C⟩ are indeed the eigenvalues of C̄ = C − ⟨C⟩ I. Consider an
eigenvalue c of C, with associated eigenvector |c⟩. It follows that:

C|c⟩ = c|c⟩
⇔ C|c⟩ − ⟨C⟩ |c⟩ = c|c⟩ − ⟨C⟩ |c⟩
⇔ (C − ⟨C⟩ I)|c⟩ = (c− ⟨C⟩)|c⟩
⇔ C̄|c⟩ = (c− ⟨C⟩)|c⟩

Meaning, |c⟩ is still an eigenvector of C̄, but now associated to the eigenvalue c − ⟨C⟩. The |c⟩ still
make an orthonormal basis of the state space, so there are no other eigenvectors (there can’t be more
eigenvectors than the dimension of the surrounding state-space).
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Similarly, we can prove that c2 are the eigenvalues associated to C2, for an observable C: again start
from an eigenvalue c of C, associated to an eigenvector |C⟩:

C|c⟩ = c|c⟩ ⇔ C(C|c⟩) = C(c|c⟩) ⇔ C2|c⟩ = c(C|c⟩︸︷︷︸
c|c⟩

) ⇔ C2|c⟩ = c2|c⟩)

1) We’ll prove the fact for an arbitrary observable C: it’ll naturally hold for both A and B.

(∆C)2 :=
∑
c

c̄2P (c)

=
∑
c

(c− ⟨c⟩)2P (c) (definition of c̄)

= ⟨Ψ|C̄2|Ψ⟩ =:
〈
C̄2

〉
(two previous properties)

2) This is an elementary calculation:

[Ā, B̄] := ĀB̄ − B̄Ā (commutator’s definition)

= (A− ⟨A⟩ I)(B − ⟨B⟩ I)− (B − ⟨B⟩ I)(A− ⟨A⟩ I) (definition of C̄)

=
(
AB − ⟨A⟩B − ⟨B⟩A+ ⟨A⟩ ⟨B⟩ I

)
−

(
BA− ⟨B⟩A− ⟨A⟩B + ⟨B⟩ ⟨A⟩ I

)
= AB −BA

=: [A,B] (commutator’s definition)

Remember, ⟨A⟩ and ⟨B⟩ are real numbers (their multiplication is then commutative).

3) This is now just about following the reasoning preceding the exercise in the book, as suggested by the
authors, by replacing A and B with Ā and B̄.

So let:
|X⟩ = Ā|Ψ⟩ = (A− ⟨A⟩ I)|Ψ⟩; |Y ⟩ = iB̄|Ψ⟩ = i(B − ⟨B⟩ I)|Ψ⟩

Recall the general form of Cauchy-Schwarz for a complex vector space1:

2|X||Y | ≥ | ⟨X|Y ⟩+ ⟨Y |X⟩ |

Where the norm is defined from the inner-product:

|X| =
√
⟨X|X⟩

Injecting our two vectors in such a Cauchy-Schwarz equation yields:

2
√〈

Ā2
〉 〈

B̄2
〉
≥ |i(⟨Ψ|ĀB̄|Ψ⟩ − ⟨Ψ|B̄Ā|Ψ⟩)|

≥ |⟨Ψ|[Ā, B̄]|Ψ⟩| (commutator definition)

≥ |⟨Ψ|[A,B]|Ψ⟩| (from 2), [Ā, B̄] = [A,B])

But from 1), we know that

2
√〈

Ā2
〉 〈

B̄2
〉
= 2

√
(∆A)2(∆B)2 = 2∆A∆B

Note that the
√
. can be removed ”safely” as the ∆C2 are defined as a sum of positive terms (no absolute

values necessary).

Putting the two together yields the expected, general uncertainty principle:

∆A∆B ≥ |⟨Ψ|[A,B]|Ψ⟩|

1I’m sticking to the authors’ terminology and notations.
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