The Theoretical Minimum
 Quantum Mechanics - Solutions

L05E02

Last version: tales.mbivert.com/on-the-theoretical-minimum-solutions/or github.com/mbivert/ttm

M. Bivert

May 10, 2023

Exercise 1. 1) Show that $\Delta A^{2}=\left\langle\bar{A}^{2}\right\rangle$ and $\Delta B^{2}=\left\langle\bar{B}^{2}\right\rangle$
2) Show that $[\bar{A}, \bar{B}]=[A, B]$
3) Using these relations, show that

$$
\Delta A \Delta B \geq \frac{1}{2}\langle\Psi|[A, B]|\Psi\rangle
$$

OK, let's as usual recall the context: A and B are two observables. We defined the expectation value of an observable C with eigenvalues labelled as c to be:

$$
\langle C\rangle:=\langle\Psi| C|\Psi\rangle=\sum_{c} c P(c)
$$

We construct from C a new observable \bar{C} :

$$
\bar{C}:=C-\langle C\rangle I
$$

Where the identity I is sometimes implicit. The eigenvalues of \bar{C} are denoted \bar{c} and can be expressed in terms of C 's eigenvalues, denoted c :

$$
\bar{c}=c-\langle C\rangle
$$

From there, we defined the standard deviation, or the square of the uncertainty of C, assuming a "wellbehaved" probability distribution P, by:

$$
(\Delta C)^{2}:=\sum_{c} \bar{c}^{2} P(c)
$$

Let's first quickly prove that $\bar{c}=c-\langle C\rangle$ are indeed the eigenvalues of $\bar{C}=C-\langle C\rangle I$. Consider an eigenvalue c of C, with associated eigenvector $|c\rangle$. It follows that:

$$
\begin{array}{rlrl}
C|c\rangle & =c|c\rangle \\
\Leftrightarrow & & C|c\rangle-\langle C\rangle|c\rangle & =c|c\rangle-\langle C\rangle|c\rangle \\
\Leftrightarrow & (C-\langle C\rangle I)|c\rangle & =(c-\langle C\rangle)|c\rangle \\
\Leftrightarrow & \bar{C}|c\rangle & =(c-\langle C\rangle)|c\rangle
\end{array}
$$

Meaning, $|c\rangle$ is still an eigenvector of \bar{C}, but now associated to the eigenvalue $c-\langle C\rangle$. The $|c\rangle$ still make an orthonormal basis of the state space, so there are no other eigenvectors (there can't be more eigenvectors than the dimension of the surrounding state-space).

Similarly, we can prove that c^{2} are the eigenvalues associated to C^{2}, for an observable C : again start from an eigenvalue c of C, associated to an eigenvector $|C\rangle$:

$$
C|c\rangle=c|c\rangle \Leftrightarrow C(C|c\rangle)=C(c|c\rangle) \Leftrightarrow C^{2}|c\rangle=c(\underbrace{C|c\rangle}_{c|c\rangle}) \Leftrightarrow C^{2}|c\rangle=c^{2}|c\rangle)
$$

1) We'll prove the fact for an arbitrary observable C : it'll naturally hold for both A and B.

$$
\begin{aligned}
(\Delta C)^{2} & :=\sum_{c} \bar{c}^{2} P(c) \\
& =\sum_{c}(c-\langle c\rangle)^{2} P(c) \quad \text { (definition of } \bar{c} \text {) } \\
& =\langle\Psi| \bar{C}^{2}|\Psi\rangle=:\left\langle\bar{C}^{2}\right\rangle \quad \text { (two previous properties) }
\end{aligned}
$$

2) This is an elementary calculation:

$$
\begin{aligned}
{[\bar{A}, \bar{B}] } & :=\bar{A} \bar{B}-\bar{B} \bar{A} \\
& =(A-\langle A\rangle I)(B-\langle B\rangle I)-(B-\langle B\rangle I)(A-\langle A\rangle I) \\
& =(A B-\langle A\rangle B-\langle B\rangle A+\langle A\rangle\langle B\rangle I)-(B A-\langle B\rangle A-\langle A\rangle B+\langle B\rangle\langle A\rangle I) \\
& =A B-B A \\
& =:[A, B]
\end{aligned}
$$

Remember, $\langle A\rangle$ and $\langle B\rangle$ are real numbers (their multiplication is then commutative).
3) This is now just about following the reasoning preceding the exercise in the book, as suggested by the authors, by replacing A and B with \bar{A} and \bar{B}.

So let:

$$
|X\rangle=\bar{A}|\Psi\rangle=(A-\langle A\rangle I)|\Psi\rangle ; \quad|Y\rangle=i \bar{B}|\Psi\rangle=i(B-\langle B\rangle I)|\Psi\rangle
$$

Recall the general form of Cauchy-Schwarz for a complex vector space ξ^{1}.

$$
2|X||Y| \geq|\langle X \mid Y\rangle+\langle Y \mid X\rangle|
$$

Where the norm is defined from the inner-product:

$$
|X|=\sqrt{\langle X \mid X\rangle}
$$

Injecting our two vectors in such a Cauchy-Schwarz equation yields:

$$
\begin{array}{rlr}
2 \sqrt{\left\langle\bar{A}^{2}\right\rangle\left\langle\bar{B}^{2}\right\rangle} & \geq|i(\langle\Psi| \bar{A} \bar{B}|\Psi\rangle-\langle\Psi| \bar{B} \bar{A}|\Psi\rangle)| & \\
& \geq|\langle\Psi|[\bar{A}, \bar{B}]| \Psi\rangle \mid & \text { (commutator definition) } \\
& \geq|\langle\Psi|[A, B]| \Psi\rangle \mid & \text { (from 2), }[\bar{A}, \bar{B}]=[A, B] \text {) }
\end{array}
$$

But from 1), we know that

$$
2 \sqrt{\left\langle\bar{A}^{2}\right\rangle\left\langle\bar{B}^{2}\right\rangle}=2 \sqrt{(\Delta A)^{2}(\Delta B)^{2}}=2 \Delta A \Delta B
$$

Note that the $\sqrt{ }$. can be removed "safely" as the ΔC^{2} are defined as a sum of positive terms (no absolute values necessary).

Putting the two together yields the expected, general uncertainty principle:

$$
\Delta A \Delta B \geq|\langle\Psi|[A, B]| \Psi\rangle \mid
$$

[^0]
[^0]: ${ }^{1}$ I'm sticking to the authors' terminology and notations.

