The Theoretical Minimum
 Quantum Mechanics - Solutions

L06E01
Last version: tales.mbivert.com/on-the-theoretical-minimum-solutions/or github.com/mbivert/ttm
M. Bivert

May 10, 2023

Exercise 1. Prove that if $P(a, b)$ factorizes, then the correlation between a and b is zero.
Let's assume that $P(a, b)$ factorizes, meaning, let's assume than there are two functions P_{A} and P_{B} such that:

$$
P(a, b)=P_{A}(a) P_{B}(b)
$$

Recall that the authors have defined the (statistical) correlation the quantity ${ }^{1}$

$$
\left\langle\sigma_{A} \sigma_{B}\right\rangle-\left\langle\sigma_{A}\right\rangle\left\langle\sigma_{B}\right\rangle
$$

Where $\left\langle\sigma_{C}\right\rangle$ is the average value of C 's observations, also known as the expected valu ${ }^{2}$, and was defined earlier as:

$$
\left\langle\sigma_{C}\right\rangle=\sum_{c} c P(c)
$$

How should we understand $\left\langle\sigma_{A} \sigma_{B}\right\rangle$? We're trying to find a way to express it as we just did for $\left\langle\sigma_{C}\right\rangle$. It's defined as the average of the product of σ_{A} and σ_{B}, meaning, the sum of all possible products of a and b, weighted by some probability distribution, but which one? Well, we don't really know its form specifically, but if for $\left\langle\sigma_{C}\right\rangle$ it was a function of c, then we can guess it must now be a function of a and b : this is the $P(a, b)$ from the exercise statement:

$$
\left\langle\sigma_{A} \sigma_{B}\right\rangle=\sum_{a}\left(\sum_{b} a b P(a, b)\right)
$$

From there, it's just a matter of developing the computation, using our assumption that $P(a, b)$ factorizes:

$$
\begin{aligned}
\left\langle\sigma_{A} \sigma_{B}\right\rangle & =\sum_{a}\left(\sum_{b} a b P(a, b)\right) \\
& =\sum_{a} \sum_{b}\left(a b P_{A}(a) P_{B}(b)\right) \\
& =\sum_{a} \sum_{b}\left(\left(a P_{A}(a)\right)\left(b P_{B}(b)\right)\right) \\
& =\left(\sum_{a} a P_{A}(a)\right)\left(\sum_{b} b P_{B}(b)\right) \\
& =\left\langle\sigma_{A}\right\rangle\left\langle\sigma_{B}\right\rangle \\
\Leftrightarrow & \left\langle\sigma_{A} \sigma_{B}\right\rangle-\left\langle\sigma_{A}\right\rangle\left\langle\sigma_{B}\right\rangle=0
\end{aligned}
$$

Remark 1. If you're uncertain about the \sum manipulations, you may want to rewrite them as explicit sum over a small number of terms to convince you of their correctness.

[^0]
[^0]: ${ }^{1}$ Precise mathematical formulations are more involved, see for instance https://en.wikipedia.org/wiki/Correlation 2 https://en.wikipedia.org/wiki/Expected_value

