The Theoretical Minimum Quantum Mechanics - Solutions L06E01

Last version: tales.mbivert.com/on-the-theoretical-minimum-solutions/ or github.com/mbivert/ttm

M. Bivert

May 10, 2023

Exercise 1. Prove that if P(a, b) factorizes, then the correlation between a and b is zero.

Let's assume that P(a, b) factorizes, meaning, let's assume than there are two functions P_A and P_B such that:

$$P(a,b) = P_A(a)P_B(b)$$

Recall that the authors have defined the (statistical) correlation the quantity¹:

$$\langle \sigma_A \sigma_B \rangle - \langle \sigma_A \rangle \langle \sigma_B \rangle$$

Where $\langle \sigma_C \rangle$ is the average value of C's observations, also known as the expected value², and was defined earlier as:

$$\langle \sigma_C \rangle = \sum_c c P(c)$$

How should we understand $\langle \sigma_A \sigma_B \rangle$? We're trying to find a way to express it as we just did for $\langle \sigma_C \rangle$. It's defined as the average of the product of σ_A and σ_B , meaning, the sum of all possible products of a and b, weighted by some probability distribution, but which one? Well, we don't really know its form specifically, but if for $\langle \sigma_C \rangle$ it was a function of c, then we can guess it must now be a function of a and b: this is the P(a, b) from the exercise statement:

$$\langle \sigma_A \sigma_B \rangle = \sum_a \left(\sum_b ab P(a, b) \right)$$

From there, it's just a matter of developing the computation, using our assumption that P(a, b) factorizes:

$$\begin{split} \langle \sigma_A \sigma_B \rangle &= \sum_a \left(\sum_b ab P(a, b) \right) \\ &= \sum_a \sum_b \left(ab P_A(a) P_B(b) \right) \\ &= \sum_a \sum_b \left((a P_A(a)) (b P_B(b)) \right) \\ &= \left(\sum_a a P_A(a) \right) \left(\sum_b b P_B(b) \right) \\ &= \left\langle \sigma_A \right\rangle \left\langle \sigma_B \right\rangle \\ \Leftrightarrow \overline{\left\langle \sigma_A \sigma_B \right\rangle - \left\langle \sigma_A \right\rangle \left\langle \sigma_B \right\rangle = 0} \quad \Box \end{split}$$

Remark 1. If you're uncertain about the \sum manipulations, you may want to rewrite them as explicit sum over a small number of terms to convince you of their correctness.

 $[\]label{eq:linear} {}^{1}\ensuremath{\mathsf{Precise}}\xspace$ mathematical formulations are more involved, see for instance https://en.wikipedia.org/wiki/Correlation ${}^{2}\ensuremath{\mathsf{https://en.wikipedia.org/wiki/Expected_value}\xspace$