The Theoretical Minimum
 Quantum Mechanics - Solutions

L06E03
Last version: tales.mbivert.com/on-the-theoretical-minimum-solutions/or github.com/mbivert/ttm
M. Bivert

June 21, 2023

Exercise 1. Prove that the state \mid sing cannot be written as a product state.
Let's recall the definition of the so-called singlet state |sing \rangle :

$$
|\operatorname{sing}\rangle=\frac{1}{\sqrt{2}}(|u d\rangle-|d u\rangle)
$$

As for the previous exercise, we're still in the context of combining two state spaces: Alice's and Bob's, each representing the states of a spin, where the general form of Alice's state vectors is:

$$
\left.\left.\alpha_{u} \mid u\right\}+\alpha_{d} \mid d\right\}, \quad\left(\alpha_{u}, \alpha_{d}\right) \in \mathbb{C}^{2}
$$

While spin states for the second space (Bob's) are denoted:

$$
\beta_{u}|u\rangle+\beta_{d}|d\rangle, \quad\left(\beta_{u}, \beta_{d}\right) \in \mathbb{C}^{2}
$$

In this context, let's clarify the difference between a product state and a general composite state, with potential entanglement:
Product state obtained by developing a product between two states from Alice and Bob's state spaces, which yield something along the form:

$$
\alpha_{u} \beta_{u}|u u\rangle+\alpha_{u} \beta_{d}|u d\rangle+\alpha_{d} \beta_{u}|d u\rangle+\alpha_{d} \beta_{d}|d d\rangle
$$

Remember from the previous exercise that such a state vector is naturally normalized, as a consequence of the normalization of the underlying vectors from Alice and Bob's space states;

General state for a 2-spins system obtained by linear combination of the vectors from the ordered basis $\{|u u\rangle,|u d\rangle,|d u\rangle,|d d\rangle\}$:

$$
\Psi=\psi_{u u}|u u\rangle+\psi_{u d}|u d\rangle+\psi_{d u}|d u\rangle+\psi_{d d}|d d\rangle
$$

And impose a normalization condition on the scalar factors:

$$
|\Psi|=1 \Leftrightarrow \psi_{u u}^{*} \psi_{u u}+\psi_{u d}^{*} \psi_{u d}+\psi_{d u}^{*} \psi_{d u}+\psi_{d d}^{*} \psi_{d d}=1
$$

Clearly, |sing〉 is normalized: it's at least a general state for a 2-spins system. Assume it is a product state. Then there exists $\left(\alpha_{u}, \alpha_{d}, \beta_{u}, \beta_{d}\right) \in \mathbb{C}^{4}$ such that:

$$
\left\{\begin{array}{l}
\alpha_{u} \beta_{d}=\frac{1}{\sqrt{2}} \\
\alpha_{d} \beta_{u}=-\frac{1}{\sqrt{2}} \\
\alpha_{u} \beta_{u}=0 \\
\alpha_{d} \beta_{d}=0
\end{array}\right.
$$

But now, if $\alpha_{u} \beta_{u}=0$, then at least either $\alpha_{u}=0$ or $\beta_{u}=0$. Assume $\alpha_{u}=0$. But then, we can't have $\alpha_{u} \beta_{d}=1 / \sqrt{2}$. Assume then $\beta_{u}=0$. Yet in this case, we can't have $\alpha_{d} \beta_{u}=-1 / \sqrt{2}$.

So the system isn't solvable and our previous assumption can't hold. Hence, there's no such ($\left.\alpha_{u}, \alpha_{d}, \beta_{u}, \beta_{d}\right) \in$ \mathbb{C}^{4}, and \mid sing \rangle is not a product state.

