The Theoretical Minimum Quantum Mechanics - Solutions L06E05

 $Last version: tales.mbivert.com/on-the-theoretical-minimum-solutions/ \ or \ github.com/mbivert/ttm and the solution of the$

M. Bivert

May 10, 2023

Exercise 1. Prove the following theorem:

When any of Alice's or Bob's spin operators acts on a product state, the result is still a product state.

Show that in a product state, the expectation value of any component of σ or τ is exactly the same as it would be in the individual single-spin states.

Remark 1. This is a bit long, but fairly straightforward.

As usual, let's recall the context. We have two state spaces, one for Alice, and one for Bob, each sufficient to describe a spin.

Spin states for Alice's and Bob's spaces are respectively denoted:

$$\alpha_u|u\} + \alpha_d|d\}, \quad (\alpha_u, \alpha_d) \in \mathbb{C}^2; \qquad \beta_u|u\rangle + \beta_d|d\rangle, \quad (\beta_u, \beta_d) \in \mathbb{C}^2$$

Such states are normalized:

$$\alpha_u^* \alpha_u + \alpha_d^* \alpha_d = 1; \quad \beta_u^* \beta_u + \beta_d^* \beta_d = 1$$

We use a tensor product to join the two spaces. Among all the possible linear combination from the resulting product space, which is a vector space, product states are those of the form (where the α s and β s are constrained by the previous normalization conditions):

$$|\Psi\rangle = \alpha_u \beta_u |uu\rangle + \alpha_u \beta_d |ud\rangle + \alpha_d \beta_u |du\rangle + \alpha_d \beta_d |dd\rangle$$

Now, we want to act on such a product state with an operator from either Alice's state space (σ) or Bob's (τ), which, as we've saw earlier, can naturally be extended from the individual spaces to the product spaces. Recall that the operators's definition in their own respective state spaces are identical

$$\tau_x = \sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; \qquad \tau_y = \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}; \qquad \tau_z = \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

However, when acting on a product state (and more generally, on a vector from the product space), each will respectively only act on the corresponding part of the tensor product gluing basis vectors, for instance: (1 + 1) = (1 + 2) =

$$\sigma_x(\gamma|ab\rangle) = \gamma\sigma_x(|a\} \otimes |b\rangle) = \gamma|(\sigma_x(a))b\rangle$$

$$\tau_x(\gamma|ab\rangle) = \gamma\tau_x(|a\} \otimes |b\rangle) = \gamma|a(\tau_x(b))\rangle$$

Because the computation will be exactly symmetric, we're only going to do the work for Alice's operators.

Remark 2. It would be interesting to see under which circumstances the result generalizes to arbitrary observables (Hermitian operators). It seems we would need for such an operator σ to transform the basis vectors $|u\rangle$ and $|d\rangle$ in such a way that the induced rotation and scaling to reach $\sigma|u\rangle$ and $\sigma|d\rangle$, would somehow balance, so as to preserve the product state constraint. In particular, $\sigma|u\rangle$ and $\sigma|d\rangle$ should be orthogonal.

This is exactly what happens below, for the spin operators.

Note that:

$$\sigma_x|u\} = \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1\\ 0 \end{pmatrix} = \begin{pmatrix} 0\\ 1 \end{pmatrix} = |d\}; \qquad \sigma_x|d\} = \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0\\ 1 \end{pmatrix} = \begin{pmatrix} 1\\ 0 \end{pmatrix} = |u\}$$

Then:

$$\begin{split} \sigma_{x}|\Psi\rangle &= \alpha_{u}\beta_{u}\Bigl(\underbrace{(\sigma_{x}|u\})}_{|d\}}\otimes|u\rangle\Bigr) + \alpha_{u}\beta_{d}\Bigl(\underbrace{(\sigma_{x}|u\})}_{|d\}}\otimes|d\rangle\Bigr) + \alpha_{d}\beta_{u}\Bigl(\underbrace{(\sigma_{x}|d\})}_{|u\}}\otimes|u\rangle\Bigr) + \alpha_{d}\beta_{d}\Bigl(\underbrace{(\sigma_{x}|d\})}_{|u\}}\otimes|d\rangle\Bigr) \\ &= \alpha_{u}\beta_{u}|du\rangle + \alpha_{u}\beta_{d}|dd\rangle + \alpha_{d}\beta_{u}|uu\rangle + \alpha_{d}\beta_{d}|ud\rangle \\ &= \alpha_{d}\beta_{u}|uu\rangle + \alpha_{d}\beta_{d}|ud\rangle + \alpha_{u}\beta_{u}|du\rangle + \alpha_{u}\beta_{d}|dd\rangle \\ &= \gamma_{u}\delta_{u}|uu\rangle + \gamma_{u}\delta_{d}|ud\rangle + \gamma_{d}\delta_{u}|du\rangle + \gamma_{d}\delta_{d}|dd\rangle \end{split}$$

Where, for the last step, we've just introduced some renaming (it'll be made explicit in a moment). Such a state will be a product state if the following hold:

$$\gamma_u^* \gamma_u + \gamma_d^* \gamma_d = 1; \quad \delta_u^* \delta_u + \delta_d^* \delta_d = 1$$

Let's transcribe this in terms of α s and β s:

$$\alpha_d^* \alpha_d + \alpha_u^* \alpha_u = 1; \quad \beta_u^* \beta_u + \beta_d^* \beta_d = 1$$

Which are but the normalization conditions underlying $|\Psi\rangle$:

$$\alpha_u^* \alpha_u + \alpha_d^* \alpha_d = 1; \quad \beta_u^* \beta_u + \beta_d^* \beta_d = 1$$

Hence, $\sigma_x |\Psi\rangle$ is a state product. \Box

We'll now do similar computations, but for σ_y and σ_z . Starting with σ_y , note that:

$$\sigma_y|u\} = \begin{pmatrix} 0 & -i\\ i & 0 \end{pmatrix} \begin{pmatrix} 1\\ 0 \end{pmatrix} = \begin{pmatrix} 0\\ i \end{pmatrix} = i|d\}; \qquad \sigma_y|d\} = \begin{pmatrix} 0 & -i\\ i & 0 \end{pmatrix} \begin{pmatrix} 0\\ 1 \end{pmatrix} = \begin{pmatrix} -i\\ 0 \end{pmatrix} = -i|u\}$$

Then:

$$\begin{split} \sigma_{y}|\Psi\rangle &= \alpha_{u}\beta_{u}\Big(\underbrace{(\sigma_{y}|u\})}_{i|d\}}\otimes|u\rangle\Big) + \alpha_{u}\beta_{d}\Big(\underbrace{(\sigma_{y}|u\})}_{i|d\}}\otimes|d\rangle\Big) + \alpha_{d}\beta_{u}\Big(\underbrace{(\sigma_{y}|d\})}_{-i|u\}}\otimes|u\rangle\Big) + \alpha_{d}\beta_{d}\Big(\underbrace{(\sigma_{y}|d\})}_{-i|u\}}\otimes|d\rangle\Big) \\ &= i\alpha_{u}\beta_{u}|du\rangle + i\alpha_{u}\beta_{d}|dd\rangle - i\alpha_{d}\beta_{u}|uu\rangle - i\alpha_{d}\beta_{d}|ud\rangle \\ &= -i\alpha_{d}\beta_{u}|uu\rangle - i\alpha_{d}\beta_{d}|ud\rangle + i\alpha_{u}\beta_{u}|du\rangle + i\alpha_{u}\beta_{d}|dd\rangle \\ &= \gamma_{u}\delta_{u}|uu\rangle + \gamma_{u}\delta_{d}|ud\rangle + \gamma_{d}\delta_{u}|du\rangle + \gamma_{d}\delta_{d}|dd\rangle \end{split}$$

Where again, for the last step, we've performed some renaming (again, made explicit in a few lines). For this to be a product state, the following must hold:

$$\gamma_u^* \gamma_u + \gamma_d^* \gamma_d = 1; \quad \delta_u^* \delta_u + \delta_d^* \delta_d = 1$$

Again, transcribed in terms of α s and β s this yields:

$$(-i\alpha_d)^*(-i\alpha_d) + (i\alpha_u)^*(i\alpha_u) = 1; \quad \beta_u^*\beta_u + \beta_d^*\beta_d = 1$$

$$\Leftrightarrow ((i\alpha_d^*)(-i\alpha_d) + (-i\alpha_u^*)(i\alpha_u) = 1; \quad \beta_u^*\beta_u + \beta_d^*\beta_d = 1)$$

$$\Leftrightarrow (\alpha_d^*\alpha_d + \alpha_u^*\alpha_u = 1; \quad \beta_u^*\beta_u + \beta_d^*\beta_d = 1)$$

Which again, is the normalization conditions for $|\Psi\rangle$. Hence, $\sigma_y|\Psi\rangle$ is a product state. \Box

One last time for σ_z , start by observing:

$$\sigma_y | u \} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} = | u \}; \qquad \sigma_y | d \} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ -1 \end{pmatrix} = -| d \}$$

Then:

$$\begin{split} \sigma_{z}|\Psi\rangle &= & \alpha_{u}\beta_{u}\Bigl(\underbrace{(\sigma_{z}|u\})}_{|u\}}\otimes|u\rangle\Bigr) + \alpha_{u}\beta_{d}\Bigl(\underbrace{(\sigma_{z}|u\})}_{|u\}}\otimes|d\rangle\Bigr) + \alpha_{d}\beta_{u}\Bigl(\underbrace{(\sigma_{z}|d\})}_{-|d\}}\otimes|u\rangle\Bigr) + \alpha_{d}\beta_{d}\Bigl(\underbrace{(\sigma_{z}|d\})}_{-|d\}}\otimes|d\rangle\Bigr) \\ &= & \alpha_{u}\beta_{u}|uu\rangle + \alpha_{u}\beta_{d}|ud\rangle - \alpha_{d}\beta_{u}|du\rangle - \alpha_{d}\beta_{d}|dd\rangle \\ &= & \gamma_{u}\delta_{u}|uu\rangle + \gamma_{u}\delta_{d}|ud\rangle + \gamma_{d}\delta_{u}|du\rangle + \gamma_{d}\delta_{d}|dd\rangle \end{split}$$

The renaming is much simpler this time. Let's recall one last time the product state condition:

$$\gamma_u^* \gamma_u + \gamma_d^* \gamma_d = 1; \quad \delta_u^* \delta_u + \delta_d^* \delta_d = 1$$

Or, transcribed in terms of α s and β s:

$$\alpha_u^* \alpha_u + (-\alpha_d)^* (-\alpha_d) = 1; \quad \beta_u^* \beta_u + \beta_d^* \beta_d = 1$$
$$\Leftrightarrow (\alpha_u^* \alpha_u + \alpha_d^* \alpha_d = 1; \quad \beta_u^* \beta_u + \beta_d^* \beta_d = 1)$$

Which again, is but the condition for $|\Psi\rangle$ to be a state product. Hence, $\sigma_z |\Psi\rangle$ is a state product. \Box

It remains to establish the last part of the exercise, namely, that the expectation is unchanged. Recall that for an observable A, given a state $|\Psi\rangle$, the expected value is defined as:

$$\langle A \rangle := \langle \Psi | A | \Psi \rangle$$

Now, we've been computing $A|\Psi\rangle$ in the previous section for all "component" of Alice's spin; so we just have to take a product with $\langle\Psi|$ to get the expected value.

Now remember, we consider an ordered basis $\{|uu\rangle, |ud\rangle, |du\rangle, |dd\rangle\}$ to create column/row vectors, for instance:

$$|\Psi\rangle = \alpha_u \beta_u |uu\rangle + \alpha_u \beta_d |ud\rangle + \alpha_d \beta_u |du\rangle + \alpha_d \beta_d |dd\rangle = \begin{pmatrix} \alpha_u \beta_u \\ \alpha_u \beta_d \\ \alpha_d \beta_u \\ \alpha_d \beta_d \end{pmatrix}$$

We previously established that:

$$\sigma_x |\Psi\rangle = \alpha_d \beta_u |uu\rangle + \alpha_d \beta_d |ud\rangle + \alpha_u \beta_u |du\rangle + \alpha_u \beta_d |dd\rangle$$

Hence:

$$\begin{aligned} \langle \sigma_x \rangle &= \langle \Psi | (\sigma_x | \Psi \rangle) \\ &= \left(\alpha_u^* \beta_u^* \quad \alpha_u^* \beta_d^* \quad \alpha_d^* \beta_u^* \quad \alpha_d^* \beta_d^* \right) \begin{pmatrix} \alpha_d \beta_u \\ \alpha_d \beta_d \\ \alpha_u \beta_u \\ \alpha_u \beta_d \end{pmatrix} \\ &= \alpha_u^* \beta_u^* \alpha_d \beta_u + \alpha_u^* \beta_d^* \alpha_d \beta_d + \alpha_d^* \beta_u^* \alpha_u \beta_u + \alpha_d^* \beta_d^* \alpha_u \beta_d \\ &= \beta_d^* \beta_d (\alpha_u^* \alpha_d + \alpha_d^* \alpha_u) + \beta_u^* \beta_u (\alpha_u^* \alpha_d + \alpha_d^* \alpha_u) \\ &= \underbrace{(\beta_d^* \beta_d + \beta_u^* \beta_u)}_{=1} (\alpha_u^* \alpha_d + \alpha_d^* \alpha_u) \\ &= \alpha_u^* \alpha_d + \alpha_d^* \alpha_u \end{aligned}$$

I don't think we've already computed $\langle \Psi | \sigma_x | \Psi \rangle$ in terms of α s and β s before (we did earlier in L03E04 computed it in terms of θ , an angle between two states), so let's do it (I'll use σ_x^A to indicate that we're

using σ_x restricted to Alice's space; for clarity, I'll be using the *ordered* basis $\{|u\}, |d\}\}$:

$$\begin{aligned} \left\langle \sigma_x^A \right\rangle &= \left\{ \Psi | \sigma_x^A | \Psi \right\} \\ &= \left(\alpha_u^* \quad \alpha_d^* \right) \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \alpha_u \\ \alpha_d \end{pmatrix} \\ &= \left(\alpha_u^* \quad \alpha_d^* \right) \begin{pmatrix} \alpha_d \\ \alpha_u \end{pmatrix} \\ &= \alpha_u^* \alpha_d + \alpha_d^* \alpha_u \\ &= \left\langle \sigma_x \right\rangle \quad \Box \end{aligned}$$

Let's do the same thing for $\langle \sigma_y \rangle;$ recall that we've computed earlier.

$$\sigma_y |\Psi\rangle = -i\alpha_d\beta_u |uu\rangle - i\alpha_d\beta_d |ud\rangle + i\alpha_u\beta_u |du\rangle + i\alpha_u\beta_d |dd\rangle$$

Hence,

$$\begin{aligned} \langle \sigma_y \rangle &= \langle \Psi | (\sigma_y | \Psi \rangle) \\ &= \left(\alpha_u^* \beta_u^* \quad \alpha_u^* \beta_d^* \quad \alpha_d^* \beta_u^* \quad \alpha_d^* \beta_d^* \right) \begin{pmatrix} -i\alpha_d \beta_u \\ -i\alpha_d \beta_d \\ i\alpha_u \beta_d \end{pmatrix} \\ &= i (-\alpha_u^* \beta_u^* \alpha_d \beta_u - \alpha_u^* \beta_d^* \alpha_d \beta_d + \alpha_d^* \beta_u^* \alpha_u \beta_u + \alpha_d^* \beta_d^* \alpha_u \beta_d) \\ &= i (-\alpha_u^* \beta_u^* \alpha_d \beta_u - \alpha_u^* \alpha_d) + \beta_d^* \beta_d (\alpha_d^* \alpha_u - \alpha_u^* \alpha_d) \\ &= i (\beta_u^* \beta_u + \beta_d^* \beta_d) (\alpha_d^* \alpha_u - \alpha_u^* \alpha_d) \\ &= i (\alpha_d^* \alpha_u - \alpha_u^* \alpha_d) \end{aligned}$$

On the other hand:

$$\langle \sigma_y^A \rangle = \{ \Psi | \sigma_y^A | \Psi \}$$

$$= (\alpha_u^* \quad \alpha_d^*) \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \begin{pmatrix} \alpha_u \\ \alpha_d \end{pmatrix}$$

$$= (\alpha_u^* \quad \alpha_d^*) \begin{pmatrix} -i\alpha_d \\ i\alpha_u \end{pmatrix}$$

$$= i(\alpha_d^*\alpha_u - \alpha_u^*\alpha_d)$$

$$= \langle \sigma_y \rangle \quad \Box$$

Finally for $\langle \sigma_z \rangle$, recall:

$$\sigma_{z}|\Psi\rangle = \alpha_{u}\beta_{u}|uu\rangle + \alpha_{u}\beta_{d}|ud\rangle - \alpha_{d}\beta_{u}|du\rangle - \alpha_{d}\beta_{d}|dd\rangle$$

Hence,

$$\begin{aligned} \langle \sigma_z \rangle &= \langle \Psi | (\sigma_z | \Psi \rangle) \\ &= \left(\alpha_u^* \beta_u^* \quad \alpha_u^* \beta_d^* \quad \alpha_d^* \beta_u^* \quad \alpha_d^* \beta_d^* \right) \begin{pmatrix} \alpha_u \beta_u \\ \alpha_u \beta_d \\ -\alpha_d \beta_u \\ -\alpha_d \beta_d \end{pmatrix} \\ &= \alpha_u^* \beta_u^* \alpha_u \beta_u + \alpha_u^* \beta_d^* \alpha_u \beta_d - \alpha_d^* \beta_u^* \alpha_d \beta_u - \alpha_d^* \beta_d^* \alpha_d \beta_d \\ &= \beta_u^* \beta_u (\alpha_u^* \alpha_u - \alpha_d^* \alpha_d) + \beta_d^* \beta_d (\alpha_u^* \alpha_u - \alpha_d^* \alpha_d) \\ &= \underbrace{(\beta_u^* \beta_u + \beta_d^* \beta_d)}_{=1} (\alpha_u^* \alpha_u - \alpha_d^* \alpha_d) \\ &= \alpha_u^* \alpha_u - \alpha_d^* \alpha_d \end{aligned}$$

And on the other hand:

$$\begin{aligned} \left\langle \sigma_z^A \right\rangle &= \left\{ \Psi | \sigma_z^A | \Psi \right\} \\ &= \left(\alpha_u^* \quad \alpha_d^* \right) \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} \alpha_u \\ \alpha_d \end{pmatrix} \\ &= \left(\alpha_u^* \quad \alpha_d^* \right) \begin{pmatrix} \alpha_u \\ -\alpha_d \end{pmatrix} \\ &= \alpha_u^* \alpha_u - \alpha_d^* \alpha_d \\ &= \left\langle \sigma_y \right\rangle \quad \Box \end{aligned}$$