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Exercise 1. Prove the following theorem:

When any of Alice’s or Bob’s spin operators acts on a product state, the result is still a product state.

Show that in a product state, the expectation value of any component of σ or τ is exactly the same as it
would be in the individual single-spin states.

Remark 1. This is a bit long, but fairly straightforward.

As usual, let’s recall the context. We have two state spaces, one for Alice, and one for Bob, each sufficient
to describe a spin.

Spin states for Alice’s and Bob’s spaces are respectively denoted:

αu|u}+ αd|d}, (αu, αd) ∈ C2; βu|u⟩+ βd|d⟩, (βu, βd) ∈ C2

Such states are normalized:
α∗
uαu + α∗

dαd = 1; β∗
uβu + β∗

dβd = 1

We use a tensor product to join the two spaces. Among all the possible linear combination from the
resulting product space, which is a vector space, product states are those of the form (where the αs and
βs are constrained by the previous normalization conditions):

|Ψ >= αuβu|uu⟩+ αuβd|ud⟩+ αdβu|du⟩+ αdβd|dd⟩

Now, we want to act on such a product state with an operator from either Alice’s state space (σ) or Bob’s
(τ ), which, as we’ve saw earlier, can naturally be extended from the individual spaces to the product
spaces. Recall that the operators’s definition in their own respective state spaces are identical

τx = σx =

(
0 1
1 0

)
; τy = σy =

(
0 −i
i 0

)
; τz = σz =

(
1 0
0 −1

)
However, when acting on a product state (and more generally, on a vector from the product space),
each will respectively only act on the corresponding part of the tensor product gluing basis vectors, for
instance:

σx(γ|ab⟩) = γσx(|a} ⊗ |b⟩) = γ|(σx(a))b⟩
τx(γ|ab⟩) = γτx(|a} ⊗ |b⟩) = γ|a(τx(b))⟩

Because the computation will be exactly symmetric, we’re only going to do the work for Alice’s operators.

Remark 2. It would be interesting to see under which circumstances the result generalizes to arbitrary
observables (Hermitian operators). It seems we would need for such an operator σ to transform the basis
vectors |u⟩ and |d⟩ in such a way that the induced rotation and scaling to reach σ|u⟩ and σ|d⟩, would
somehow balance, so as to preserve the product state constraint. In particular, σ|u⟩ and σ|d⟩ should be
orthogonal.

This is exactly what happens below, for the spin operators.
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Note that:

σx|u} =

(
0 1
1 0

)(
1
0

)
=

(
0
1

)
= |d}; σx|d} =

(
0 1
1 0

)(
0
1

)
=

(
1
0

)
= |u}

Then:

σx|Ψ⟩ = αuβu

(
(σx|u})︸ ︷︷ ︸

|d}

⊗|u⟩
)
+ αuβd

(
(σx|u})︸ ︷︷ ︸

|d}

⊗|d⟩
)
+ αdβu

(
(σx|d})︸ ︷︷ ︸

|u}

⊗|u⟩
)
+ αdβd

(
(σx|d})︸ ︷︷ ︸

|u}

⊗|d⟩
)

= αuβu|du⟩+ αuβd|dd⟩+ αdβu|uu⟩+ αdβd|ud⟩
= αdβu|uu⟩+ αdβd|ud⟩+ αuβu|du⟩+ αuβd|dd⟩
= γuδu|uu⟩+ γuδd|ud⟩+ γdδu|du⟩+ γdδd|dd⟩

Where, for the last step, we’ve just introduced some renaming (it’ll be made explicit in a moment). Such
a state will be a product state if the following hold:

γ∗
uγu + γ∗

dγd = 1; δ∗uδu + δ∗dδd = 1

Let’s transcribe this in terms of αs and βs:

α∗
dαd + α∗

uαu = 1; β∗
uβu + β∗

dβd = 1

Which are but the normalization conditions underlying |Ψ⟩:

α∗
uαu + α∗

dαd = 1; β∗
uβu + β∗

dβd = 1

Hence, σx|Ψ⟩ is a state product.

We’ll now do similar computations, but for σy and σz. Starting with σy, note that:

σy|u} =

(
0 −i
i 0

)(
1
0

)
=

(
0
i

)
= i|d}; σy|d} =

(
0 −i
i 0

)(
0
1

)
=

(
−i
0

)
= −i|u}

Then:

σy|Ψ⟩ = αuβu

(
(σy|u})︸ ︷︷ ︸

i|d}

⊗|u⟩
)
+ αuβd

(
(σy|u})︸ ︷︷ ︸

i|d}

⊗|d⟩
)
+ αdβu

(
(σy|d})︸ ︷︷ ︸
−i|u}

⊗|u⟩
)
+ αdβd

(
(σy|d})︸ ︷︷ ︸
−i|u}

⊗|d⟩
)

= iαuβu|du⟩+ iαuβd|dd⟩ − iαdβu|uu⟩ − iαdβd|ud⟩
= − iαdβu|uu⟩ − iαdβd|ud⟩+ iαuβu|du⟩+ iαuβd|dd⟩
= γuδu|uu⟩+ γuδd|ud⟩+ γdδu|du⟩+ γdδd|dd⟩

Where again, for the last step, we’ve performed some renaming (again, made explicit in a few lines). For
this to be a product state, the following must hold:

γ∗
uγu + γ∗

dγd = 1; δ∗uδu + δ∗dδd = 1

Again, transcribed in terms of αs and βs this yields:

(−iαd)
∗(−iαd) + (iαu)

∗(iαu) = 1; β∗
uβu + β∗

dβd = 1

⇔ ((iα∗
d)(−iαd) + (−iα∗

u)(iαu) = 1; β∗
uβu + β∗

dβd = 1)

⇔ (α∗
dαd + α∗

uαu = 1; β∗
uβu + β∗

dβd = 1)

Which again, is the normalization conditions for |Ψ⟩. Hence, σy|Ψ⟩ is a product state.
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One last time for σz, start by observing:

σy|u} =

(
1 0
0 −1

)(
1
0

)
=

(
1
0

)
= |u}; σy|d} =

(
1 0
0 −1

)(
0
1

)
=

(
0
−1

)
= −|d}

Then:

σz|Ψ⟩ = αuβu

(
(σz|u})︸ ︷︷ ︸

|u}

⊗|u⟩
)
+ αuβd

(
(σz|u})︸ ︷︷ ︸

|u}

⊗|d⟩
)
+ αdβu

(
(σz|d})︸ ︷︷ ︸

−|d}

⊗|u⟩
)
+ αdβd

(
(σz|d})︸ ︷︷ ︸

−|d}

⊗|d⟩
)

= αuβu|uu⟩+ αuβd|ud⟩ − αdβu|du⟩ − αdβd|dd⟩
= γuδu|uu⟩+ γuδd|ud⟩+ γdδu|du⟩+ γdδd|dd⟩

The renaming is much simpler this time. Let’s recall one last time the product state condition:

γ∗
uγu + γ∗

dγd = 1; δ∗uδu + δ∗dδd = 1

Or, transcribed in terms of αs and βs:

α∗
uαu + (−αd)

∗(−αd) = 1; β∗
uβu + β∗

dβd = 1

⇔ (α∗
uαu + α∗

dαd = 1; β∗
uβu + β∗

dβd = 1)

Which again, is but the condition for |Ψ⟩ to be a state product. Hence, σz|Ψ⟩ is a state product.

It remains to establish the last part of the exercise, namely, that the expectation is unchanged. Recall
that for an observable A, given a state |Ψ⟩, the expected value is defined as:

⟨A⟩ := ⟨Ψ|A|Ψ⟩

Now, we’ve been computing A|Ψ⟩ in the previous section for all ”component” of Alice’s spin; so we just
have to take a product with ⟨Ψ| to get the expected value.

Now remember, we consider an ordered basis {|uu⟩, |ud⟩, |du⟩, |dd⟩} to create column/row vectors, for
instance:

|Ψ >= αuβu|uu⟩+ αuβd|ud⟩+ αdβu|du⟩+ αdβd|dd⟩ =


αuβu

αuβd

αdβu

αdβd


We previously established that:

σx|Ψ⟩ = αdβu|uu⟩+ αdβd|ud⟩+ αuβu|du⟩+ αuβd|dd⟩

Hence:
⟨σx⟩ = ⟨Ψ|(σx|Ψ⟩)

=
(
α∗
uβ

∗
u α∗

uβ
∗
d α∗

dβ
∗
u α∗

dβ
∗
d

)
αdβu

αdβd

αuβu

αuβd


= α∗

uβ
∗
uαdβu + α∗

uβ
∗
dαdβd + α∗

dβ
∗
uαuβu + α∗

dβ
∗
dαuβd

= β∗
dβd(α

∗
uαd + α∗

dαu) + β∗
uβu(α

∗
uαd + α∗

dαu)

= (β∗
dβd + β∗

uβu)︸ ︷︷ ︸
=1

(α∗
uαd + α∗

dαu)

= α∗
uαd + α∗

dαu

I don’t think we’ve already computed ⟨Ψ|σx|Ψ⟩ in terms of αs and βs before (we did earlier in L03E04
computed it in terms of θ, an angle between two states), so let’s do it (I’ll use σA

x to indicate that we’re
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using σx restricted to Alice’s space; for clarity, I’ll be using the ordered basis {|u}, |d}}):〈
σA
x

〉
= {Ψ|σA

x |Ψ}

=
(
α∗
u α∗

d

)(0 1
1 0

)(
αu

αd

)
=

(
α∗
u α∗

d

)(αd

αu

)
= α∗

uαd + α∗
dαu

= ⟨σx⟩

Let’s do the same thing for ⟨σy⟩; recall that we’ve computed earlier.

σy|Ψ⟩ = −iαdβu|uu⟩ − iαdβd|ud⟩+ iαuβu|du⟩+ iαuβd|dd⟩

Hence,
⟨σy⟩ = ⟨Ψ|(σy|Ψ⟩)

=
(
α∗
uβ

∗
u α∗

uβ
∗
d α∗

dβ
∗
u α∗

dβ
∗
d

)
−iαdβu

−iαdβd

iαuβu

iαuβd


= i(−α∗

uβ
∗
uαdβu − α∗

uβ
∗
dαdβd + α∗

dβ
∗
uαuβu + α∗

dβ
∗
dαuβd)

= i
(
β∗
uβu(α

∗
dαu − α∗

uαd) + β∗
dβd(α

∗
dαu − α∗

uαd)
)

= i (β∗
uβu + β∗

dβd)︸ ︷︷ ︸
=1

(α∗
dαu − α∗

uαd)

= i(α∗
dαu − α∗

uαd)

On the other hand: 〈
σA
y

〉
= {Ψ|σA

y |Ψ}

=
(
α∗
u α∗

d

)(0 −i
i 0

)(
αu

αd

)
=

(
α∗
u α∗

d

)(−iαd

iαu

)
= i(α∗

dαu − α∗
uαd)

= ⟨σy⟩

Finally for ⟨σz⟩, recall:

σz|Ψ⟩ = αuβu|uu⟩+ αuβd|ud⟩ − αdβu|du⟩ − αdβd|dd⟩

Hence,
⟨σz⟩ = ⟨Ψ|(σz|Ψ⟩)

=
(
α∗
uβ

∗
u α∗

uβ
∗
d α∗

dβ
∗
u α∗

dβ
∗
d

)
αuβu

αuβd

−αdβu

−αdβd


= α∗

uβ
∗
uαuβu + α∗

uβ
∗
dαuβd − α∗

dβ
∗
uαdβu − α∗

dβ
∗
dαdβd

= β∗
uβu(α

∗
uαu − α∗

dαd) + β∗
dβd(α

∗
uαu − α∗

dαd)

= (β∗
uβu + β∗

dβd)︸ ︷︷ ︸
=1

(α∗
uαu − α∗

dαd)

= α∗
uαu − α∗

dαd

And on the other hand:
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〈
σA
z

〉
= {Ψ|σA

z |Ψ}

=
(
α∗
u α∗

d

)(1 0
0 −1

)(
αu

αd

)
=

(
α∗
u α∗

d

)( αu

−αd

)
= α∗

uαu − α∗
dαd

= ⟨σy⟩
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