# The Theoretical Minimum <br> Quantum Mechanics - Solutions 

L06E07
Last version: tales.mbivert.com/on-the-theoretical-minimum-solutions/ or github.com/mbivert/ttm
M. Bivert

May 10, 2023

Exercise 1. Next, Charlie prepares the spins in a different state, called $\left|T_{1}\right\rangle$, where

$$
\left|T_{1}\right\rangle=\frac{1}{\sqrt{2}}(|u d\rangle+|d u\rangle)
$$

In these examples, $T$ stands for triplet. These triplet states are completely different from the states in the coin and die examples. What are the expectation values of the operators $\sigma_{z} \tau_{z}, \sigma_{x} \tau_{x}$, and $\sigma_{y} \tau_{y}$ ?

What a difference a sign can make!
This is the same kind of computations there were done in the previous exercise, and earlier in the book. As usual, recall the Pauli matrices:

$$
\tau_{x}=\sigma_{x}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) ; \quad \tau_{y}=\sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) ; \quad \tau_{z}=\sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Also recall, from L06E04, the rules for acting on composite state vectors ${ }^{1}$

$$
\begin{aligned}
& \sigma_{z}|u u\rangle=\quad|u u\rangle ; \tau_{z}|u u\rangle=|u u\rangle \\
& \sigma_{z}|u d\rangle=\quad|u d\rangle ; \quad \tau_{z}|u d\rangle=-|u d\rangle \\
& \sigma_{z}|d u\rangle=-|d u\rangle ; \quad \tau_{z}|d u\rangle=|d u\rangle \\
& \sigma_{z}|d d\rangle=-|d d\rangle ; \quad \tau_{z}|d d\rangle=-|d d\rangle \\
& \sigma_{x}|u u\rangle=\quad|d u\rangle ; \quad \tau_{x}|u u\rangle=\quad|u d\rangle \\
& \sigma_{x}|u d\rangle=\quad|d d\rangle ; \tau_{x}|u d\rangle=|u u\rangle \\
& \sigma_{x}|d u\rangle=\quad|u u\rangle ; \tau_{x}|d u\rangle=\quad|d d\rangle \\
& \sigma_{x}|d d\rangle=\quad|u d\rangle ; \quad \tau_{x}|d d\rangle=|d u\rangle \\
& \sigma_{y}|u u\rangle=i|d u\rangle ; \quad \tau_{y}|u u\rangle=i|u d\rangle \\
& \sigma_{y}|u d\rangle=i|d d\rangle ; \quad \tau_{y}|u d\rangle=-i|u u\rangle \\
& \sigma_{y}|d u\rangle=-i|u u\rangle ; \quad \tau_{y}|d u\rangle=i|d d\rangle \\
& \sigma_{y}|d d\rangle=-i|u d\rangle ; \quad \tau_{y}|d d\rangle=-i|d u\rangle
\end{aligned}
$$

We now have everything we need to compute the expectation values.

[^0]\[

$$
\begin{aligned}
\left\langle\sigma_{z} \tau_{z}\right\rangle & :=\left\langle T_{1}\right| \sigma_{z} \tau_{z}\left|T_{1}\right\rangle \\
& =\frac{1}{\sqrt{2}}\left\langle T_{1}\right| \sigma_{z} \tau_{z}(|u d\rangle+|d u\rangle) \\
& =\frac{1}{\sqrt{2}}\left\langle T_{1}\right| \sigma_{z}(-|u d\rangle+|d u\rangle) \\
& =-\frac{1}{\sqrt{2}}\left\langle T_{1}\right|(|u d\rangle+|d u\rangle) \\
& =-\frac{1}{2}(\langle u d|+\langle d u|)(|u d\rangle+|d u\rangle) \\
& =-\frac{1}{2}(\underbrace{\langle u d \mid u d\rangle}_{1}+\underbrace{\langle u d \mid d u\rangle}_{0}+\underbrace{\langle d u \mid u d\rangle}_{0}+\underbrace{\langle d u \mid d u\rangle}_{1}) \\
& =-1
\end{aligned}
$$
\]

For the last step, remember, as for the previous exercise, that $|d u\rangle$ and $|u d\rangle$ are orthonormal basis vectors.

$$
\begin{aligned}
\left\langle\sigma_{x} \tau_{x}\right\rangle & :=\left\langle T_{1}\right| \sigma_{x} \tau_{x}\left|T_{1}\right\rangle \\
& =\frac{1}{\sqrt{2}}\left\langle T_{1}\right| \sigma_{x} \tau_{x}(|u d\rangle+|d u\rangle) \\
& =\frac{1}{\sqrt{2}}\left\langle T_{1}\right| \sigma_{x}(|u u\rangle+|d d\rangle) \\
& =\frac{1}{\sqrt{2}}\left\langle T_{1}\right|(|d u\rangle+|u d\rangle) \\
& =\frac{1}{2}(\langle u d|+\langle d u|)(|d u\rangle+|u d\rangle) \\
& =-\frac{1}{2}(\underbrace{\langle u d \mid d u\rangle}_{0}+\underbrace{\langle u d \mid u d\rangle}_{1}+\underbrace{\langle d u \mid d u\rangle}_{1}+\underbrace{\langle d u \mid u d\rangle}_{0}) \\
& =+1
\end{aligned}
$$

$$
\begin{aligned}
\left\langle\sigma_{y} \tau_{y}\right\rangle & :=\left\langle T_{1}\right| \sigma_{y} \tau_{y}\left|T_{1}\right\rangle \\
& =\frac{1}{\sqrt{2}}\left\langle T_{1}\right| \sigma_{y} \tau_{y}(|u d\rangle+|d u\rangle) \\
& =\frac{1}{\sqrt{2}}\left\langle T_{1}\right| \sigma_{y}(-i|u u\rangle+i|d d\rangle) \\
& =\frac{i}{\sqrt{2}}\left\langle T_{1}\right|(-i|d u\rangle-i|u d\rangle) \\
& =\frac{1}{2}(\langle u d|+\langle d u|)(|d u\rangle+|u d\rangle) \\
& =-\frac{1}{2}(\underbrace{\langle u d \mid d u\rangle}_{0}+\underbrace{\langle u d \mid u d\rangle}_{1}+\underbrace{\langle d u \mid d u\rangle}_{1}+\underbrace{\langle d u \mid u d\rangle}_{0}) \\
& =+1
\end{aligned}
$$


[^0]:    ${ }^{1}$ You have the same in the book's appendix

